Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 12756, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550378

ABSTRACT

The building construction materials are responsible for a large amount of energy and natural resource consumption. In light of the current challenges of resource scarcity and global climate change, the circular economy (CE) is a promising strategy to mitigate pressure on the environment, improve supplying of raw materials, and increase new market and employment opportunities. Developing eco-friendly thermal insulation materials based on agro-waste is a new waste management trend to achieve the sustainability of the resource and energy consumption in the construction sectors. In this work, banana-polystyrene composites were prepared by mixing the banana peels powder (BP) with polystyrene (PS) in different weight ratios (90:10, 80:20, 70:30, and 60:40). The physical and thermal properties such as thermal conductivity, electrical conductivity, Fourier Transform Infrared (FTIR), crystallographic structures of the fibers, X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC) were carried out on BP and BP-PS1 that were prepared with ten wt.% and 20 wt.% of polystyrene powder (BP-PS2). The bio-composites results showed low thermal conductivity ranging from 0.028 to 0.030 W/m.K. The BP-PS2 exhibited a lower thermal conductivity of 0.027 W/m.K, while the pure peel powder demonstrated notable thermal stability, indicated by a total weight loss of 66.4% and a high crystallinity value of 56.1%. Furthermore, the thermal analysis (TGA) and X-Ray Diffraction (XRD) demonstrated that the pure banana peel has the highest thermal stability and crystallinity. These findings indicate that using banana peel-polystyrene composites represents an innovative solution for thermal insulation in buildings as an alternative to conventional materials to reduce energy and resource consumption.

2.
Sci Total Environ ; 875: 162629, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36889388

ABSTRACT

The recent regulations pertaining to the circular economy have unlocked new prospects for researchers. In contrast to the unsustainable models associated with the linear economy, integration of concepts of circular economy braces reducing, reusing, and recycling of waste materials into high-end products. In this regard, adsorption is a promising and cost-effective water treatment technology for handling conventional and emerging pollutants. Numerous studies are published annually to investigate the technical performance of nano-adsorbents and nanocomposites in terms of adsorption capacity and kinetics. Yet, economic performance evaluation is rarely discussed in the literature. Even if an adsorbent shows high removal efficiency towards a specific pollutant, its high preparation and/or utilization costs might hinder its real-life use. This tutorial review aims at illustrating cost estimation methods for the synthesis and utilization of conventional and nano-adsorbents. The current treatise discusses the synthesis of adsorbents on a laboratory scale where the raw material, transportation, chemical, energy, and any other costs are discussed. Moreover, equations for estimating the costs at the large-scale adsorption units for wastewater treatment are illustrated. This review focuses on introducing these topics to non-specialized readers in a detailed but simplified manner.

3.
ACS Omega ; 7(48): 44103-44115, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36506177

ABSTRACT

Waste valorization of spent wastewater nanoadsorbents is a promising technique to support the circular economy strategies. The terrible rise of heavy metal pollution in the environment is considered a serious threat to the terrestrial and aquatic environment. This led to the necessity of developing cost-effective, operation-convenient, and recyclable adsorbents. ZnCoFe mixed metal oxide (MMO) was synthesized using co-precipitation. The sample was characterized using X-ray powder diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Factors affecting the adsorption process such as pH, the dose of adsorbent, and time were investigated. ZnCoFe MMO showed the maximum adsorption capacity of 118.45 mg/g for ceftriaxone sodium. The spent MMO was recycled as an adsorbent for malachite green (MG) removal. Interestingly, the spent adsorbent showed 94% removal percent for MG as compared to the fresh MMO (90%). The kinetic investigation of the adsorption process was performed and discussed. In addition, ZnCoFe MMO was tested as an antimicrobial agent. The proposed approach opens up a new avenue for recycling wastes after adsorption into value-added materials for utilization in adsorbent production with excellent performance as antimicrobial agents.

4.
Sci Rep ; 12(1): 624, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35022432

ABSTRACT

This study aimed to evaluate the efficacy of magnetic nanocomposite of cefotax against MRSA. A total of 190 samples were collected from milk, farm personnel and different environmental components from the dairy farm under the study to isolate S. aureus. Cefotax based magnetic nanoparticles was synthetized by the adsorption method and marked using Fourier-transform infrared spectrum (FT-IR), and X-ray diffraction (XRD), then it was characterized using Scanning and Transmission Electron Microscope (SEM and TEM). The obtained results revealed that number of positive samples of S. aureus isolation were 63 (33.1%), mainly from feed manger followed by milk machine swabs (60.0 and 53.3%, respectively) at X2 = 48.83 and P < 0.001. Obtained isolates were identified biochemically and by using molecular assays (PCR), also mec A gene responsible for resistance to cefotax was detected. Testing the sensitivity of 63 isolates of S. aureus showed variable degree of resistance to different tested antibiotics and significant sensitivity to cefotax based magnetic nanoparticles at P < 0.05. It was concluded that dairy environment might act a potential source for transmission of MRSA between human and animal populations. In addition, cefotax based magnetic nanoparticles verified an extreme antimicrobial efficacy against MRSA.


Subject(s)
Methicillin-Resistant Staphylococcus aureus
5.
Sci Rep ; 11(1): 21365, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725383

ABSTRACT

In our work, the removal of cationic and anionic dyes from water was estimated both experimentally and computationally. We check the selectivity of the adsorbent, Zn-Fe layered double hydroxide (LDH) toward three dyes. The physical and chemical properties of the synthesis adsorbent before and after the adsorption process were investigated using X-ray photoelectron spectroscopy, energy dispersive X-ray, X-ray diffraction, FT-IR, HRTEM, and FESEM analysis, particle size, zeta potential, optical and electric properties were estimated. The effect of pH on the adsorption process was estimated. The chemical stability was investigated at pH 4. Monte Carlo simulations were achieved to understand the mechanism of the adsorption process and calculate the adsorption energies. Single dye adsorption tests revealed that Zn-Fe LDH effectively takes up anionic methyl orange (MO) more than the cationic dyes methylene blue (MB) and malachite green (MG). From MO/MB/MG mixture experiments, LDH selectively adsorbed in the following order: MO > MB > MG. The adsorption capacity of a single dye solution was 230.68, 133.29, and 57.34 mg/g for MO, MB, and MG, respectively; for the ternary solution, the adsorption capacity was 217.97, 93.122, and 49.57 mg/g for MO, MB, and MG, respectively. Zn-Fe LDH was also used as a photocatalyst, giving 92.2% and 84.7% degradation at concentrations of 10 and 20 mg/L, respectively. For visible radiation, the Zn-Fe LDH showed no activity.

6.
Environ Sci Pollut Res Int ; 28(34): 47651-47667, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33895951

ABSTRACT

Herein, a new adsorbent was prepared by modifying Mg-Fe LDH for the removal of Cu2+ metal ions from wastewater. Mg-Fe LDH with 5-(3-nitrophenyllazo)-6-aminouracil ligand has been successfully prepared using direct co-precipitation methods and was fully characterized using FTIR analysis, X-ray diffraction, BET surface area theory, zeta potential, partial size, TGA/DTA, CHN, EDX, FESEM, and HRTEM. The surface areas of Mg-Fe LDH and Mg-Fe LDH/ligand were 73.9 m2/g and 34.7 m2/g respectively. Moreover, Cu2+ adsorption on LDH surfaces was intensively examined by adjusting different parameters like time, adsorbent dosage, pH, and Cu2+ metal ion concentration. Several isotherm and kinetic models were investigated to understand the mechanism of adsorption towards Cu2+ metal ions. Adsorption capacity values of LDH and ligand-LDH rounded about 165 and 425 mg/g respectively, applying nonlinear fitting of Freundlich and Langmuir isotherm equations showing that the ligand-LDH can be considered a potential material to produce efficient adsorbent for removal of heavy metal from polluted water. The adsorption of Cu2+ metal ions followed a mixed 1,2-order mechanism. The isoelectric point (PZC) of the prepared sample was investigated and discussed. The effect of coexisting cations on the removal efficiency of Cu2+ ions shows a minor decrease in the adsorption efficiency. Recyclability and chemical stability of these adsorbents show that using Mg-Fe LDH/ligand has an efficiency removal for Cu2+ ions higher than Mg-Fe LDH through seven adsorption/desorption cycles. Moreover, the recycling of the Cu2+ ions was tested using cyclic voltammetry technique from a neutral medium, and the Cu2+ ion recovery was 68%.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Water Purification , Adsorption , Hydrogen-Ion Concentration , Hydroxides , Kinetics , Uracil/analogs & derivatives , Water , Water Pollutants, Chemical/analysis
7.
Sci Total Environ ; 766: 144333, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33412433

ABSTRACT

Discharge of Drinking Water Treatment Plants sludge directly on surface waters without any treatment is becoming an important issue in most countries around the world, behavior is not only affecting on the water quality, but also on soil and crops. This study investigated the effect of discharge of alum sludge and the variation in the level of the Nile water (flow regime) on water and soil qualities. The water samples were analyzed for physical, chemical and microbiological parameters. In winter (closure season), the mean values of EC, TDS, major ions, pH, DO and total algae count were higher than in summer. In summer (flooding season), it was noticed that the mean values of SiO2, metals, COD, BOD, TOC, nutrients and bacteriological parameters exceed winter season values. Moreover, the concentrations of Al, Fe, Mn were above WHO permissible limits and the concentrations of aggregate organic parameters exceed the FAO permissible limits in sites near the areas of sludge discharge. Most of water samples exceed the national guidelines. For soil, our findings showed that the concentrations of metals in soil samples collected from areas irrigated from canals receiving alum sludge are more (two-three times) than their concentrations from the pure sites. However, Pb concentration in the contaminated soil reaches ten times more than in the pure one. The management of sludge disposal becomes an urgent priority to save waterways, soil and crops from pollution. Finally, the variation in water flow during the winter closure period with reduction by ≈15 BCM is similar to the same reduction in the Nile flow when the Grand Ethiopian Renaissance Dam starts operation. This indicates that the long-term reduction in water flow due to the construction of this dam may cause serious environmental changes in the Nile River in Egypt.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Alum Compounds , Egypt , Environmental Monitoring , Metals, Heavy/analysis , Rivers , Sewage , Silicon Dioxide , Soil , Water Pollutants, Chemical/analysis
8.
Sci Rep ; 10(1): 587, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31953466

ABSTRACT

Novel modified Ni/Fe layered double hydroxides with different morphology of spherical - like shape were fabricated via using urea as a ligand and glycerol (Ni/Fe LDH/GL) with Ni:Fe molar ratios of 2:1 by the simplest co -precipitation method. Also, for comparison purposes, Ni/Fe LDH was synthesized to be used as a control one. A suggested interpretation for the morphology change was also given. The materials were characterized by X-ray diffraction (XRD), The Fourier transform infrared (FT - IR) spectroscopy, field emission scanning electron microscopy (FESEM), EDX for elemental analysis, high resolution transmission electron microscopy (HRTEM), Brunauer, Emmett, and Teller (BET) equation, particle size distributions and Zeta potential measurements. In addition, the synthesized materials were used as adsorbents for removal of potassium dichromate from aqueous solutions under various experimental conditions. The adsorption of Cr (VI) was strongly pH dependant and the pHPZC was studied. Kinetic studies were evaluated through different models including, pseudo first and second orders, mixed 1, 2 orders, intra particle diffusion and Avrami models. For adsorption isotherms, two-parameter models (Langmuir, Freundlich and Temkin) and three parameter models (Sips, Langmuir-Freundlich and Tooth) were investigated showing maximum adsorption capacity of 50.43 mg/g and 136.05 mg/g for Ni/Fe LDH and Ni/Fe LDH/GL, respectively. Also, the effect of temperature was investigated at (23, 35, 45, 55 °C) and the thermodynamic parameters (∆H°, ∆S° and ∆G°) were calculated showing exothermic and spontaneous adsorption process. The effect of coexisting anions (Cl-, SO42- and HPO42-) and humic acid at different concentrations on the removal efficiency of dichromate ions was investigated. Chemical stability and recyclability of these adsorbents were also studied. The intermolecular hydrogen bonds formation between dichromate ion, urea, glycerol, LDH was explored by Monte Carlo simulation This study suggested that the modified Ni/Fe LDH/GL materials were promising nanoadsorbents for efficient potassium dichromate removal.

9.
RSC Adv ; 10(46): 27633-27651, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-35516965

ABSTRACT

Inorganic nano-layered double hydroxide (LDH) materials are used in the catalytic field, and have demonstrated great applicability in the pharmacological fields. In the current study, we report Zn-Al LDH as an adsorbent for levofloxacin (levo). The physical and chemical properties of the prepared material before and after adsorption were monitored using X-ray diffraction, Fourier-transform infrared (FT-IR) spectroscopic analysis, energy dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area measurements, high-resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscopy (FESEM). Density functional theory (DFT) calculations for levo and its protonated species were studied at the B3LYP/6-311G (d,p) level of theory. The removal percentage of levo was 73.5%. The adsorption isotherm was investigated using nine different models at pH 9, where the obtained correlation coefficients (R 2) using the Redlich-Peterson and Toth models were 0.977. The thermodynamic parameters ΔS°, ΔG° and ΔH° were estimated and discussed in detail. Also, to support the adsorption research field, the applicability of the formed waste after the adsorption of levo onto Zn-Al LDH was investigated for medical purposes. The toxicity of levo in both normal and nanocomposite form was studied. Neither toxicological symptoms nor harmless effects were exhibited throughout the in vivo study. The oral anti-inflammatory activity, tested using 6% formalin to produce edema in the footpad, was manifested as a significant increase of 37% in the anti-inflammatory effect of the Zn-Al LDH/levo nanocomposite compared to levo in its normal form.

11.
Sci Rep ; 9(1): 6418, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015527

ABSTRACT

Doxycycline (DOX) and amoxicillin (AMOX) are important Broad-spectrum antibiotics used in treating multiple human and animal diseases. For the sake of exploring novel medical applications, both antibiotics were loaded into magnesium aluminium layer double hydroxide (Mg-Al)/LDH nanocomposite through the co-precipitation method. The synthesized materials were characterized by XRD, FT-IR, particle size analysis, FESEM and HRTEM. Acute toxicological studies were conducted using median lethal dose LD50, where a total number of 98 rats (200-150 gm) of both sexes were used. An experimental wound was aseptically incised on the anterior-dorsal side of each rat, while 98% of pure medical ethanol was used for ulcer induction. Acute toxicity, wound closure rate, healing percentages, ulcer index, protective rate and histopathological studies were investigated. Antibiotic Nanocomposites has significantly prevented ulcer formation and improved wound healing process to take shorter time than that of the typical processes, when compared with that of same drugs in microscale systems or commercial standard drugs. These results were confirmed by the histopathological findings. By converting it into the Nanoform, which is extremely important, especially with commonly used antibiotics, novel pharmacological properties were acquired from the antibiotics. The safe uses of DOX/LDH and AMOX/LDH Nanocomposites in this study were approved for biomedical applications.


Subject(s)
Aluminum Hydroxide/chemistry , Amoxicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Doxycycline/pharmacology , Magnesium Hydroxide/chemistry , Nanocomposites/chemistry , Skin Ulcer/prevention & control , Wounds, Nonpenetrating/drug therapy , Animals , Drug Carriers , Drug Combinations , Drug Compounding/methods , Ethanol/administration & dosage , Female , Humans , Male , Nanocomposites/administration & dosage , Nanocomposites/ultrastructure , Rats , Skin Ulcer/chemically induced , Skin Ulcer/pathology , Treatment Outcome , Wound Healing/drug effects , Wound Healing/physiology
12.
RSC Adv ; 9(56): 32544-32561, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-35529712

ABSTRACT

Nowadays, improving the physico-chemical properties of nanomaterials to enhance their performance towards various applications is urgent. Accordingly, gamma irradiation (GI) has evolved and attracted wide attention as a promising green technique to meet this need. In the current study, a Co-Fe LDH was used as a model 2D nanomaterial and was irradiated by GI (dose = 100 kGy). The sample was characterized via XRD, FTIR, FESEM, HRTEM, hydrodynamic size, zeta potential, and BET surface area measurements. The results showed that after irradiation, the surface area of the sample increased from 83 to 89 m2 g-1. Moreover, irradiation increased its dielectric constant, dielectric loss and AC conductivity. In addition, the sample showed superparamagnetic behavior, where its saturation magnetization increased from 1.28 to 52.04 emu g-1 after irradiation. Furthermore, the adsorption capacity of the irradiated LDH towards malachite green (MG) and methylene blue (MB) as model wastewater pollutants was also studied. The exposure of LDH to GI enhanced its adsorption capacity for MG from 44.73 to 54.43 mg g-1. The Langmuir-Freundlich, Sips, and Baudu models were well suited for both MG and MB adsorption among the six fitted isotherm models. The pseudo-first and second order models fit the adsorption kinetics better than the intraparticle diffusion model for both dyes. The interaction of MB and MG with the LDH surface was further investigated in dry and aqueous solution using Grand canonical Monte Carlo and molecular dynamics simulations. These two techniques provided insight into the adsorption mechanism, which is vital to understand the adsorption process by the LDH nanosheets and their possible use in practical applications. Moreover, the Co-Fe LDH showed good antibacterial activity against both Gram-positive and Gram-negative bacteria strains. Furthermore, due to its magnetic property, the Co-Fe LDH could be simply recovered from water by magnetic separation at a low magnetic field after the adsorption process.

SELECTION OF CITATIONS
SEARCH DETAIL
...