Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Microvasc Res ; 154: 104695, 2024 07.
Article in English | MEDLINE | ID: mdl-38723843

ABSTRACT

Exosomes are nanosized vesicles that have been reported as cargo-delivering vehicles between cells. Müller cells play a crucial role in the pathogenesis of diabetic retinopathy (DR). Activated Müller cells in the diabetic retina mediate disruption of barrier integrity and neovascularization. Endothelial cells constitute the inner blood-retinal barrier (BRB). Herein, we aim to evaluate the effect of Müller cell-derived exosomes on endothelial cell viability and barrier function under normal and hyperglycemic conditions. Müller cell-derived exosomes were isolated and characterized using Western blotting, nanoparticle tracking, and electron microscopy. The uptake of Müller cells-derived exosomes by the human retinal endothelial cells (HRECs) was monitored by labeling exosomes with PKH67. Endothelial cell vitality after treatment by exosomes under normo- and hypoglycemic conditions was checked by MTT assay and Western blot for apoptotic proteins. The barrier function of HRECs was evaluated by analysis of ZO-1 and transcellular electrical resistance (TER) using ECIS. Additionally, intracellular Ca+2 in HRECs was assessed by spectrofluorimetry. Analysis of the isolated exosomes showed a non-significant change in the number of exosomes isolated from both normal and hyperglycemic condition media, however, the average size of exosomes isolated from the hyperglycemic group showed a significant rise when compared to that of the normoglycemic group. Müller cells derived exosomes from hyperglycemic condition media markedly reduced HRECs cell count, increased caspase-3 and Annexin V, decreased ZO-1 levels and TER, and increased intracellular Ca+ when compared to other groups. However, treatment of HRECs under hyperglycemia with normo-glycemic Müller cells-derived exosomes significantly decreased cell death, preserved cellular integrity and barrier function, and reduced intracellular Ca+2. Collectively, Müller cell-derived exosomes play a remarkable role in the pathological changes associated with hyperglycemia-induced inner barrier dysfunction in DR. Further in vivo research will help in understanding the role of exosomes as therapeutic targets and/or delivery systems for DR.


Subject(s)
Apoptosis , Blood-Retinal Barrier , Cell Survival , Diabetic Retinopathy , Endothelial Cells , Ependymoglial Cells , Exosomes , Exosomes/metabolism , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Diabetic Retinopathy/physiopathology , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Humans , Endothelial Cells/metabolism , Endothelial Cells/pathology , Blood-Retinal Barrier/metabolism , Blood-Retinal Barrier/pathology , Cells, Cultured , Zonula Occludens-1 Protein/metabolism , Capillary Permeability , Calcium Signaling , Cell Line , Retinal Vessels/metabolism , Retinal Vessels/pathology , Retinal Vessels/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...