Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 19597, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37949960

ABSTRACT

Chromium is a hazardous compound from industrial processes, known for its toxicity, mutagenicity, teratogenicity, and carcinogenicity. Chemical methods are efficient but cost-effective alternatives with reduced sludge are sought. Electro-coagulation, utilizing low-cost iron plate electrodes, was explored for factual tannery wastewater treatment in this manuscript. Operating parameters such as initial chromium concentration, voltage, electrode number, operating time, agitation speed and current density has been studied to evaluate the treatment effeciency. Under optimal conditions (15 V, 0.4 mA/cm2, 200 rpm, 330 ppm chromium, 8 iron electrodes with a total surface area of 0.1188 m2, 3 h), chromium elimination was 98.76%. Iron anode consumption, power use, and operating cost were 0.99 gm/L, 0.0143 kW-h/L, and 160 EGP/kg of chromium eliminated, respectively. Kinetics studies were pursued first-order reaction (97.99% correlation), and Langmuir isotherms exhibited strong conformity (Langmuir R2: 99.99%). A predictive correlation for chromium elimination (R2: 97.97%) was developed via statistical regression. At HARBY TANNERY factory in Egypt, industrial sewage treatment achieved a final chromium disposal rate of 98.8% under optimized conditions.

2.
RSC Adv ; 10(30): 17552-17560, 2020 May 05.
Article in English | MEDLINE | ID: mdl-35515636

ABSTRACT

Due to the toxicity of lead(ii) to all living organisms as it destroys the central nervous system leading to circulatory system and brain disorders, the development of effective and selective lead(ii) ionophores for its detection is very important. In this work, 1,3-bis[2-(N-morpholino)acetamidophenoxy]propane (BMAPP), belonging to acyclic diamides, was applied as a highly selective lead(ii) ionophore in a carbon paste ion selective electrode for the accurate and precise determination of Pb(ii) ions even in the presence of other interfering ions. Factors affecting the electrode's response behavior were studied and optimized. Scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and FT-IR spectroscopy were used for studying the morphology and response mechanism of the prepared sensor. The lipophilicity of the used ionophore, which contributes to the mechanical stability of the sensor, was studied using the contact angle measurement technique. The selectivity coefficients obtained by the separate solution method (SSM) and fixed interference method (FIM) confirmed the selectivity of the proposed sensor for Pb(ii) ions. The proposed sensor exhibited a Nernstian slope of 29.96 ± 0.34 mV per decade over a wide linear range of 5 × 10-8 to 1 × 10-1 mol L-1 and detection limit of 3 × 10-8 mol L-1 for 2 months with a fast response time (<10 s) and working pH range (2.5-5.5). To further ensure the practical applicability of the sensor, it was successfully applied for the lead(ii) ion determination in different water samples and the obtained data showed an agreement with those obtained by atomic absorption spectroscopy. In addition, it was successfully applied for the potentiometric titration of Pb(ii) against K2CrO4 and Na2SO4.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117938, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31841673

ABSTRACT

A series of new three heteroleptic complexes of the general formula [Ln(Cn)(TMEDA)Cl(OH2)]·2Cl·xH2O, (where Ln = La(III), Er(III) and Yb(III), Cn = cocaine and TMEDA = N,N,N',N'-tetramethylethylenediamine) were synthesized, structurally characterized by elemental analysis, spectroscopic methods, molar conductivity and mass spectrometry. Thermal properties of the synthesized complexes and their kinetic thermodynamic parameters were studied. Theoretical calculations including geometry optimization, electronic structure and electronic and thermal energies were carried out using DFT and TD-DFT calculations at B3LYP/LANL2DZ level of theory and the different quantum chemical parameters were calculated. The in vitro antiproliferative activity of the newly synthesized complexes was assessed by MTT assay on MCF-7 and HepG-2 cancer cell lines. Yb(III) complex showed promising cytotoxic activity comparable to that of cisplatin on both cell lines with minimum effect on human normal cells. Further molecular mechanistic investigations showed that Yb(III) complex is an apoptotic inducer as it raises the caspase-3 and caspase-9 cellular level in the MCF-7 cell line. Furthermore, it showed an elevating effect on the level of the tumor suppressor nuclear proteins P21 and P27 concentrations in MCF-7 cells. Moreover, Yb(III) complex hindered the cellular scavenger system of the reactive oxygen species through reducing the glutathione peroxidase (GPx) cellular level imperiling MCF-7 cells by unmanageable oxidative stress. In addition to its cytotoxic effect, Yb(III) complex showed antimetastatic properties as it decreased the cellular levels of matrix metalloproteinases MMP-3 and MMP-9. These results showed that the Yb(III) complex is a promising cytotoxic metal-based agent that exerts its action through various molecular mechanisms with minimum effects on normal cells and with additional antimetastatic properties.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Cell Proliferation , Cocaine/chemistry , Coordination Complexes/pharmacology , Metals/chemistry , Organometallic Compounds/chemistry , Anesthetics, Local/chemistry , Antineoplastic Agents/chemistry , Biomarkers, Tumor/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cocaine/metabolism , Coordination Complexes/chemistry , Female , Humans , Metals/metabolism , Models, Molecular , Organometallic Compounds/metabolism , Quantum Theory , Tumor Cells, Cultured
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 122: 598-608, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24334061

ABSTRACT

The NSAID lornoxicam (LOR) drug was used for complex formation reactions with different metal salts like Cr(III), Mn(II), Fe(III) and Ni(II) chlorides and Fe(II), Co(II), Cu(II) and Zn(II) borates. Mononuclear complexes of these metals are obtained that coordinated to NO sites of LOR ligand molecule. The nature of bonding and the stereochemistry of the complexes have been deduced from elemental analyses, IR, UV-Vis, (1)H NMR, mass, electronic spectra, magnetic susceptibility and ESR spectral studies, conductivity measurements, thermogravimetric analyses (TG-DTG) and further confirmed by X-ray powder diffraction. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. The data show that the complexes have composition of ML2 type except for Fe(II) where the type is [ML3]. The electronic absorption spectral data of the complexes suggest an octahedral geometry around the central metal ion for all the complexes. The antimicrobial data reveals that LOR ligand in solution show inhibition capacity less or sometimes more than the corresponding complexes against all the species under study. In order to establish their future potential in biomedical applications, anticancer evaluation studies against standard breast cancer cell lines (MCF7) was performed using different concentrations. The obtained results indicate high inhibition activity for Cr(III), Fe(II) and Cu(II) complexes against breast cancer cell line (MCF7) and recommends them for testing as antitumor agents.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Piroxicam/analogs & derivatives , Transition Elements/chemistry , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Breast/drug effects , Breast Neoplasms/drug therapy , Candida albicans/drug effects , Candidiasis/drug therapy , Cell Line, Tumor , Coordination Complexes/pharmacology , Female , Humans , Piroxicam/chemistry , Piroxicam/pharmacology , Transition Elements/pharmacology
5.
Article in English | MEDLINE | ID: mdl-21855402

ABSTRACT

Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV-vis, (1)H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25±1°C and at 0.1 M KNO(3) ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO(2)(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H(2)O)(4)]·Cl(2) and [Zn(LFX)(H(2)O)(4)]·Cl(2) were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other complexes had been found to be inactive at lower concentration than 100 µg/ml.


Subject(s)
Fluoroquinolones/chemical synthesis , Fluoroquinolones/pharmacology , Cell Line, Tumor , Chromium/chemistry , Cobalt/chemistry , Copper/chemistry , Drug Screening Assays, Antitumor/methods , Humans , Inhibitory Concentration 50 , Ions , Iron/chemistry , Ligands , Magnetic Resonance Spectroscopy/methods , Manganese/chemistry , Models, Chemical , Nickel/chemistry , Oxygen/chemistry , Temperature , Thermogravimetry/methods , Thorium/chemistry , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...