Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Pak J Biol Sci ; 25(6): 516-530, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36098187

ABSTRACT

<b>Background and Objective:</b> Late sowing of wheat exposes the anthesis and grain filling stages of the crop to a terminal heat temperature stress Therefore, detecting putative QTL associated with grain yield and its attributes and identifying the most tolerant genotypes to terminal drought and heat stress across environments will be beneficial in wheat breeding programs. <b>Materials and Methods:</b> In the present study, among 49 CIMMYT wheat lines evaluated for yield and stability in eight environments, we selected the highest ten high-yielding (HYL) and the lowest ten low yielding lines (LYL) along with three wheat check cultivars (CC) for screening with eighteen previously published SSR molecular markers associated with drought and heat stress tolerance. <b>Results:</b> Two SSR markers (BARC126 and BARC11) on 7D were associated with delay heading dates under normal and late sowing dates. Likewise, the SSR markers WMC396, GWM537 and XGWM577 which were mapped on 7B, were significantly linked with grain yield-related traits under one/or both sowing dates, most of them showed desirable effects, indicating terminal heat stress tolerance. Different SSR markers viz., BARC11, XGWM132 and GWM537 showed pleiotropic effects. <b>Conclusion:</b> The SSR markers BARC186-5A, XGWM132-6B, WMC396-7B, XGWM577-7B and GWM165-4B were more prominently associated with heat tolerance by showing a desirable performance of grain yield-related traits under late sowing or across environments, some of these desirable alleles were corresponding to previously QTL in various genotypes that could be valuable in breeding for high-yield in wheat.


Subject(s)
Thermotolerance , Triticum , Edible Grain/genetics , Heat-Shock Response/genetics , Plant Breeding , Thermotolerance/genetics , Triticum/genetics
2.
Atten Percept Psychophys ; 83(7): 2968-2982, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34322789

ABSTRACT

The one-shot pairing of a stimulus with a specific cognitive control process, such as task switching, can bind the two together in memory. The episodic control-binding hypothesis posits that the formation of temporary stimulus-control bindings, which are held in event-files supported by episodic memory, can guide the contextually appropriate application of cognitive control. Across two experiments, we sought to examine the role of task-focused attention in the encoding and implementation of stimulus-control bindings in episodic event-files. In Experiment 1, we obtained self-reports of mind wandering during encoding and implementation of stimulus-control bindings. Results indicated that, whereas mind wandering during the implementation of stimulus-control bindings does not decrease their efficacy, mind wandering during the encoding of these control-state associations interferes with their successful deployment at a later point. In Experiment 2, we complemented these results by using trial-by-trial pupillometry to measure attention, again demonstrating that attention levels at encoding predict the subsequent implementation of stimulus-control bindings better than attention levels at implementation. These results suggest that, although encoding stimulus-control bindings in episodic memory requires active attention and engagement, once encoded, these bindings are automatically deployed to guide behavior when the stimulus recurs. These findings expand our understanding of how cognitive control processes are integrated into episodic event files.


Subject(s)
Learning , Memory, Episodic , Attention , Humans
SELECTION OF CITATIONS
SEARCH DETAIL