Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Biol ; 84: e268892, 2023.
Article in English | MEDLINE | ID: mdl-37311125

ABSTRACT

Most of the treatment strategies for tumors and other disorders is photodynamic therapy (PDT). For several years, increasing the efficiency of nanostructured treatment devices, including light therapy, has been considered in different treatment methods. Light Dynamics The use of nanomaterial in this method's production and progress. The use of nanoparticles as carriers is a promising accomplishment, since all the criteria for an ideal photodynamic therapy agent can be given with these nanomaterials. The kinds of nanoparticles that have recently been used in photodynamic therapy are mentioned in this article. Latest advancements are being explored in the use of inorganic nanoparticles and biodegradable polymer-based nanomaterial as carriers of photosynthetic agents. Photosynthetic nanoparticles, self-propagating nanoparticles, and conversion nanoparticles are among the successful photodynamic therapy nanoparticles addressed in this report.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Photosynthesis
2.
Braz J Biol ; 84: e264947, 2023.
Article in English | MEDLINE | ID: mdl-37194799

ABSTRACT

Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. A large number of microorganisms live in the human environment. if the balance of these creatures in nature is disturbed, the health of the individual and society will be threatened due to the production and emission of unpleasant odors and the reduction of health standards. The presence of microorganisms on textiles can cause adverse effects such as discoloration or staining on textiles, decomposition of fibrous materials, reduced strength, and eventually decay of textiles. Most fibers and polymers do not show resistance to the effects of microbes and by providing growth factors for microorganisms such as the right temperature and humidity, nutrients from sweat and fat from skin glands, dead skin cells as well as materials used in the stage of finishing the textiles causes the rapid growth and spread of various microbes. With the advent of nanotechnology, various industries and human daily life underwent changes. In recent years, increasing research on nanoparticles has led to the production of textiles with greater efficiency and added value. These modified textiles prevent the spread of unpleasant odors, the spread, and transmission of diseases. This article reviews the basics and principles of antimicrobial tetiles, as well as a brief overview of antimicrobial materials and nanostructures with antimicrobial properties.


Subject(s)
Anti-Infective Agents , Nanoparticles , Nanostructures , Humans , Anti-Infective Agents/pharmacology , Textiles , Copper
3.
Braz J Biol ; 84: e268893, 2023.
Article in English | MEDLINE | ID: mdl-37194801

ABSTRACT

Nanosensors work on the "Nano" scale. "Nano" is a unit of measurement around 10- 9 m. A nanosensor is a device capable of carrying data and information about the behavior and characteristics of particles at the nanoscale level to the macroscopic level. Nanosensors can be used to detect chemical or mechanical information such as the presence of chemical species and nanoparticles or monitor physical parameters such as temperature on the nanoscale. Nanosensors are emerging as promising tools for applications in agriculture. They offer an enormous upgrade in selectivity, speed, and sensitivity compared to traditional chemical and biological methods. Nanosensors can be used for the determination of microbe and contaminants. With the advancement of science in the world and the advent of electronic equipment and the great changes that have taken place in recent decades, the need to build more accurate, smaller and more capable sensors was felt. Today, high-sensitivity sensors are used that are sensitive to small amounts of gas, heat, or radiation. Increasing the sensitivity, efficiency and accuracy of these sensors requires the discovery of new materials and tools. Nano sensors are nanometer-sized sensors that, due to their small size and nanometer size, have such high accuracy and responsiveness that they react even to the presence of several atoms of a gas. Nano sensors are inherently smaller and more sensitive than other sensors.


Subject(s)
Nanoparticles , Organic Chemicals , Agriculture
SELECTION OF CITATIONS
SEARCH DETAIL
...