Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dose Response ; 21(4): 15593258231210432, 2023.
Article in English | MEDLINE | ID: mdl-37900619

ABSTRACT

Purpose: Gamma knife radiosurgery (GKRS) delivers high-dose external radiation to a small intracranial lesion. However, scattering and leaked radiation can deposit a portion of the dose outside the radiation field, which may pose a risk to radiation-sensitive patients, such as pregnant women. Trigeminal Neuralgia (TN) is treated with one of the highest GKRS doses (80-90 Gy). This study aimed to estimate the risk of secondary cancer induction in the uterus, ovaries, thyroid gland, and eyes of TN patients undergoing GKRS. Methods: Radiation doses to the uterus, ovary, eyes, and thyroid gland were measured for 25 female TN patients, with a mean age of 35 years, utilizing Thermo Luminescent Dosimeters (TLD). Results: The mean absorbed dose for the uterus, ovary, thyroid gland, and eyes were .63 ± .24, .471 ± .2, 8.26 ± 1.01, and 10.64 ± 1.08 cGy, respectively. Lifetime Attributable Risk (LAR) has been calculated using BEIR VII (2006) method. LAR for the uterus, ovary, and thyroid gland was 1, 2, and 23, respectively. Conclusion: The results of this study and its comparison with standard values demonstrate that on average, mean doses to mentioned organs were smaller than their tolerance doses, and there is no limitation to treating patients suffering from TN by GK.

2.
J Biomed Phys Eng ; 11(2): 135-142, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33937121

ABSTRACT

BACKGROUND: Dose distribution can be obtained from total energy released per unit mass (TERMA) and inhomogeneous energy deposition kernel (EDK) convolution. Since inhomogeneous EDK data is location-dependent, it is calculated by employing the density scaling method rather than Monte Carlo based user code EDKnrc. OBJECTIVE: The present study aimed at investigating EDK scaling formula accuracy in the presence of lung and bone inhomogeneities. MATERIAL AND METHODS: In this theoretical-practical study, six EDKs datasets with lung and bone inhomogeneity in different radii were generated using EDKnrc user code and density scaling formula. Then the scaling method data and corresponding EDKnrc-generated ones were compared to enhance the calculations, and some correction factors for error reduction were also derived to create more consistency between these data. RESULTS: The study has shown that the errors in the theoretical method for calculating inhomogeneous EDKs were significantly reduced based on the attenuation coefficient and ρα rel parameter, with α equal to 1.2 and 0.8 for bone and lung voxels, respectively. CONCLUSION: Although the density scaling method has acceptable accuracy, the error values are significant at the location of lung or bone voxels. By using the mentioned correction factors, the calculation inaccuracy of heterogeneous EDKs can be reduced down to 5%. However, the lung heterogeneity results corrected by the method are not as good as the bone cases.

3.
Rep Pract Oncol Radiother ; 26(1): 59-65, 2021.
Article in English | MEDLINE | ID: mdl-33948303

ABSTRACT

BACKGROUND: Widely used physical wedges in clinical radiotherapy lead to beam intensity attenuation as well as the beam hardening effect, which must be considered. Dynamic wedges devised to overcome the physical wedges (PWs) problems result in dosimetry complications due to jaw movement while the beam is on. This study was aimed to investigate the usability of physical wedge data instead of enhanced dynamic wedge due to the enhanced dynamic wedge (EDW) dosimetry measurement hardships of Varian 2100CD in inhomogeneous phantom by Monte Carlo code as a reliable method in radiation dosimetry. MATERIALS AND METHODS: A PW and EDW-equipped-linac head was simulated using BEAMnrc code. DOSXYZnrc was used for three-dimensional dosimetry calculation in the CIRS phantom. RESULTS: Based on the isodose curves, EDW generated a less scattered as well as lower penumbra width compared to the PW. The depth dose variations of PWs and EDWs were more in soft tissue than the lung tissue. Beam profiles of PW and EDW indicated good coincidence in all points, except for the heel area. CONCLUSION: Results demonstrated that it is possible to apply PW data instead of EDW due to the dosimetry and commissioning hardships caused by EDW in inhomogeneous media.

4.
Comput Methods Programs Biomed ; 188: 105261, 2020 May.
Article in English | MEDLINE | ID: mdl-31841789

ABSTRACT

BACKGROUND AND OBJECTIVE: In small radiation fields used in stereotactic radiosurgery penumbra is an important portion of the field size especially when critical organs at risk are located near the treatment sites. This study was aimed to reduce penumbra width (90%-50% isodose lines) of Gamma Knife (GK) machine by investigating of source to diaphragm distance (SDD) and designing compensating filter. METHODS: Compensating filters at the end of the helmet collimators with the aim of reducing penumbra as well as reducing hot spots appeared near the edge of beam were modeled using Monte Carlo simulation code. Moreover, the SDD parameter was increased as one of the effective factors on penumbra width. RESULTS: Results showed that single beam penumbra width using optimal design of filters was decreased by 59.49%, 42.50%, 39.02% and 34.44% with attenuation of 30.53%, 13.67%, 11.43% and 9.82% for 4, 8, 14 and 18 mm field sizes, respectively. CONCLUSIONS: The designed filters lead to considerable reductions in single beams penumbra width as well as a noticeable reduction in maximum dose emerged near the beam edge due to the curved lateral surface of filters.


Subject(s)
Brain Neoplasms/radiotherapy , Monte Carlo Method , Radiosurgery/methods , Algorithms , Computer Simulation , Equipment Design , Humans , Models, Theoretical , Organs at Risk , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
5.
Article in English | MEDLINE | ID: mdl-31491695

ABSTRACT

In this work, an efficient method termed as continuous flow membrane microextraction coupled with high performance liquid chromatography is introduced for a highly selective determination of metoprolol and propranolol in the biological samples. According to this method, an aqueous source phase of the analytes (donor phase, 10 mL) is circulated into an extraction cell, which is separated from an aqueous acceptor phase (100 µL) by a small piece of polypropylene membrane sheet whose pores are impregnated by an organic solvent (1-octanol, 15 µL). The analytes are extracted from the donor phase into the organic solvent. They are subsequently selectively back-extracted into the acceptor solution due to the pH gradient. The proposed method is very convenient and has the capability of being fully automated. It provides a good preconcentration and an excellent repeatability. The extractant is an aqueous phase, and by prevention of the extraction of macromolecules through the membrane, the developed method provides a high sample clean-up. In order to maximize the extraction efficiency, the influential parameters including the type of mediator solvent, pH values for the donor and acceptor solutions, extraction time, ionic strength, stirring rate, and volume of the acceptor solution are optimized. The calibration curves were obtained with a reasonable linearity (r2 = 0.999) in the range of 3-1000 ng mL-1. The limits of detection were 0.5 and 1.0 ng mL-1, and excellent relative standard deviations were obtained (between 3.2% and 4.0%). Finally, the reliability of the procedure is evaluated by determination of metoprolol and propranolol in the human urine and plasma samples, which indicates the suitability, sensitivity, and high sample clean-up of the proposed method.


Subject(s)
Adrenergic beta-Antagonists/blood , Adrenergic beta-Antagonists/urine , Chromatography, High Pressure Liquid/methods , Liquid Phase Microextraction/methods , Adrenergic beta-Antagonists/chemistry , Adrenergic beta-Antagonists/isolation & purification , Equipment Design , Humans , Limit of Detection , Linear Models , Liquid Phase Microextraction/instrumentation , Reproducibility of Results
6.
Int J Nephrol ; 2014: 120391, 2014.
Article in English | MEDLINE | ID: mdl-24744919

ABSTRACT

This study was designed to investigate the protective effects of local renal ischemic postconditioning (POC) on liver damage after renal ischemia-reperfusion (IR) injury. Male rats were divided into three groups (n = 8). They underwent a right nephrectomy before induction of 45 minutes of left kidney ischemia or sham operation. POC was performed by four cycles of 10 seconds of ischemia and 10 seconds of reperfusion just at the beginning of 24 hours of reperfusion. Then blood and liver samples were collected to measure serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and liver oxidative stress parameters including superoxide dismutase (SOD) activity and malondialdehyde (MDA) level. Renal IR caused a significant increase in liver functional indices as demonstrated by increased serum AST and ALT compared to sham group. These parameters reduced significantly in POC group compared to IR group. Liver MDA levels increased and SOD activity decreased in IR group compared to sham group. Induction of POC reduced the elevated liver MDA levels and increased the reduced liver SOD activity. These results revealed that renal IR injury causes liver damage as a remote organ and POC protects liver from renal IR injury by a modification in the hepatic oxidative stress status.

SELECTION OF CITATIONS
SEARCH DETAIL
...