Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(16)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37630337

ABSTRACT

Indocyanine green (ICG) is an important kind of near infrared (NIR) photosensitive molecules for PTT/PDT therapy as well as imaging. When exposed to NIR light, ICG can produce reactive oxygen species (ROS), which can kill cancer cells and pathogenic bacteria. Moreover, the absorbed light can also be converted into heat by ICG molecules to eliminate cancer cells. In addition, it performs exceptionally well in optical imaging-guided tumor therapy and antimicrobial therapy due to its deeper tissue penetration and low photobleaching properties in the near-infrared region compared to other dyes. In order to solve the problems of water and optical stability and multi-function problem of ICG molecules, composite nanomaterials based on ICG have been designed and widely used, especially in the fields of tumors and sterilization. So far, ICG molecules and their composite materials have become one of the most famous infrared sensitive materials. However, there have been no corresponding review articles focused on ICG molecules. In this review, the molecular structure and properties of ICG, composite material design, and near-infrared light- triggered anti-tumor, and antibacterial, and clinical applications are reviewed in detail, which of great significance for related research.


Subject(s)
Dermatitis, Phototoxic , Indocyanine Green , Humans , Indocyanine Green/pharmacology , Coloring Agents , Anti-Bacterial Agents , Hot Temperature
2.
Materials (Basel) ; 17(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38203869

ABSTRACT

Poly-γ-glutamic acid (γ-PGA) is a natural polymer composed of glutamic acid monomer and it has garnered substantial attention in both the fields of material science and biomedicine. Its remarkable cell compatibility, degradability, and other advantageous characteristics have made it a vital component in the medical field. In this comprehensive review, we delve into the production methods, primary application forms, and medical applications of γ-PGA, drawing from numerous prior studies. Among the four production methods for PGA, microbial fermentation currently stands as the most widely employed. This method has seen various optimization strategies, which we summarize here. From drug delivery systems to tissue engineering and wound healing, γ-PGA's versatility and unique properties have facilitated its successful integration into diverse medical applications, underlining its potential to enhance healthcare outcomes. The objective of this review is to establish a foundational knowledge base for further research in this field.

SELECTION OF CITATIONS
SEARCH DETAIL
...