Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cancer Res Clin Oncol ; 149(19): 17361-17369, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37840045

ABSTRACT

PURPOSE: Exercise typically reduces tumour growth, proliferation and improves outcomes. Many of these effects require exercise to change gene expression within a tumour, but whether exercise  actually affects gene expression within a tumour has not been investigated yet. The aim of this study was, therefore, to find out whether one bout of endurance exercise alters gene expression and proliferation in a C26 carcinoma in immunocompetent mice. METHODS: BALB/c were injected with C26 colon carcinoma cells. Once the tumours had formed, the mice either ran for 65 min with increasing intensity or rested before the tumour was dissected. The tumours were then analysed by RNA-Seq and stained for the proliferation marker KI67. RESULTS: One bout of running for 65 min did not systematically change gene expression in C26 carcinomas of BALB/c mice when compared to BALB/c mice that were rested. However, when analysed for sex, the expression of 17, mostly skeletal muscle-related genes was higher in the samples of the female mice taken post-exercise. Further histological analysis showed that this signal likely comes from the presence of muscle fibres from the panniculus carnosus muscle inside the tumours. Also, we found no differences in the positivity for the proliferation marker KI67 in the control and exercise C26 carcinomas. CONCLUSION: A bout of exercise did not systematically affect gene expression or proliferation in C26 carcinomas in immunocompetent BALB/c mice.


Subject(s)
Carcinoma , Colonic Neoplasms , Female , Animals , Mice , Ki-67 Antigen/genetics , Ki-67 Antigen/metabolism , Colonic Neoplasms/pathology , Muscle, Skeletal/metabolism , Carcinoma/pathology , Cell Proliferation/genetics , Gene Expression
2.
J Sports Sci Med ; 22(1): 28-35, 2023 03.
Article in English | MEDLINE | ID: mdl-36876188

ABSTRACT

Studies have reported that a stiff triceps surae muscle and tendon-aponeurosis and also a more compliant quadriceps muscle and tendon-aponeurosis, are related to lower oxygen cost during running. However, to date, no study has investigated in a single experiment how oxygen cost during running is related to the stiffness of the free tendons (Achilles tendon, patellar tendon) and all the superficial muscles of two major muscle groups for running (i.e., quadriceps, triceps surae). Thus, 17 male trained runners/triathletes participated in this study and visited the laboratory on three occasions. On the first day, the participants were familiarized with the tests. On the second day, the passive compression stiffness of the triceps surae muscle (i.e., gastrocnemii), Achilles tendon, quadriceps muscle (i.e., vastii, rectus femoris), and patellar tendon was non-invasively measured using a digital palpation device (MyotonPRO). In addition, an incremental test was applied to test the VO2max of the participants. Thereafter, in the third visit, after at least 48-h of rest, participants performed a 15-min run on the treadmill with a speed reflecting a velocity of 70% VO2max, to assess oxygen costs during running. The Spearman correlation showed a significant negative correlation between passive Achilles tendon compression stiffness and running oxygen consumption, with a large effect size (rρ = -0.52; CI (95%) -0.81 to -0.33; P = 0.03). Moreover, no further significant relationship between oxygen cost during running and the passive compression stiffness of the quadriceps muscle and patellar tendon, as well as the triceps surae muscle, was detected. The significant correlation indicates that a stiffer passive Achilles tendon can lead to a lower oxygen cost during running. Future studies will have to test the causality of this relationship with training methods such as strength training that are able to increase the Achilles tendon stiffness.


Subject(s)
Achilles Tendon , Running , Male , Humans , Lower Extremity , Quadriceps Muscle , Oxygen
3.
Antioxidants (Basel) ; 11(2)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35204099

ABSTRACT

Lactic acid fermentation (LAF) is known to improve nutritional properties and functionality and to extend the shelf life of foods. We studied the LAF of Arthrospira platensis as the sole substrate using Lactobacillus plantarum as the starter culture. Fermented (FB) and non-fermented broth (NFB) were analysed by means of pH, lactic acid bacteria (LAB) count, lactic acid concentration, microbiological safety, and nutritional composition. Additionally, water and ethanol extracts were prepared on which total phenolic content, DPPH radical scavenging activity, and cellular antioxidant activity were determined. The maximum increase in LAB count and lactic acid concentration and drop in pH was observed in the first 24 h of fermentation. Total phenolic content and DPPH radical scavinging activity of ethanol extracts increased after fermentation compared with NFB. Ethanol extracts of FB have been shown as a potential source of antioxidants, which efficiently lowered oxidation level in the cells of yeast Saccharomyces cerevisiae, as well as the oxidative damage of lipids. Additionally, the level of non-protein nitrogen increased, indicating higher protein bioavailability, and fat content decreased in comparison with NFB. No presence of pathogenic bacteria and low pH indicate enhancement of FB microbiological stability. Therefore, inclusion of fermented A. platensis into food products could lead to added-value foods based on microalgae.

SELECTION OF CITATIONS
SEARCH DETAIL
...