Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 20(22)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198414

ABSTRACT

Optimum microclimate parameters, including air temperature (T), relative humidity (RH) and vapor pressure deficit (VPD) that are uniformly distributed inside greenhouse crop production systems are essential to prevent yield loss and fruit quality. The objective of this research was to determine the spatial and temporal variations in the microclimate data of a commercial greenhouse with tomato plants located in the mid-west of Iran. For this purpose, wireless sensor data fusion was incorporated with a membership function model called Optimality Degree (OptDeg) for real-time monitoring and dynamic assessment of T, RH and VPD in different light conditions and growth stages of tomato. This approach allows growers to have a simultaneous projection of raw data into a normalized index between 0 and 1. Custom-built hardware and software based on the concept of the Internet-of-Things, including Low-Power Wide-Area Network (LoRaWAN) transmitter nodes, a multi-channel LoRaWAN gateway and a web-based data monitoring dashboard were used for data collection, data processing and monitoring. The experimental approach consisted of the collection of meteorological data from the external environment by means of a weather station and via a grid of 20 wireless sensor nodes distributed in two horizontal planes at two different heights inside the greenhouse. Offline data processing for sensors calibration and model validation was carried in multiple MATLAB Simulink blocks. Preliminary results revealed a significant deviation of the microclimate parameters from optimal growth conditions for tomato cultivation due to the inaccurate timer-based heating and cooling control systems used in the greenhouse. The mean OptDeg of T, RH and VPD were 0.67, 0.94, 0.94 in January, 0.45, 0.36, 0.42 in June and 0.44, 0.0, 0.12 in July, respectively. An in-depth analysis of data revealed that averaged OptDeg values, as well as their spatial variations in the horizontal profile were closer to the plants' comfort zone in the cold season as compared with those in the warm season. This was attributed to the use of heating systems in the cold season and the lack of automated cooling devices in the warm season. This study confirmed the applicability of using IoT sensors for real-time model-based assessment of greenhouse microclimate on a commercial scale. The presented IoT sensor node and the Simulink model provide growers with a better insight into interpreting crop growth environment. The outcome of this research contributes to the improvement of closed-field cultivation of tomato by providing an integrated decision-making framework that explores microclimate variation at different growth stages in the production season.


Subject(s)
Environmental Monitoring/instrumentation , Microclimate , Solanum lycopersicum , Agriculture , Iran , Temperature , Weather
2.
Sensors (Basel) ; 20(19)2020 Oct 03.
Article in English | MEDLINE | ID: mdl-33023001

ABSTRACT

Analyzing soils using conventional methods is often time consuming and costly due to their complexity. These methods require soil sampling (e.g., by augering), pretreatment of samples (e.g., sieving, extraction), and wet chemical analysis in the laboratory. Researchers are seeking alternative sensor-based methods that can provide immediate results with little or no excavation and pretreatment of samples. Currently, visible and infrared spectroscopy, electrical resistivity, gamma ray spectroscopy, and X-ray spectroscopy have been investigated extensively for their potential utility in soil sensing. Little research has been conducted on the application of THz (Tera Hertz) spectroscopy in soil science. The Tera Hertz band covers the frequency range between 100 GHz and 10 THz of the electromagnetic spectrum. One important feature of THz radiation is its correspondence with the particle size of the fine fraction of soil minerals (clay < 2 µm to sand < 2 mm). The particle size distribution is a fundamental soil property that governs soil water and nutrient content, among other characteristics. The interaction of THz radiation with soil particles creates detectable Mie scattering, which is the elastic scattering of electromagnetic waves by particles whose diameter corresponds approximately to the wavelength of the radiation. However, single-spot Mie scattering spectra are difficult to analyze and the understanding of interaction between THz radiation and soil material requires basic research. To improve the interpretation of THz spectra, a hyperspectral imaging system was developed. The addition of the spatial dimension to THz spectra helps to detect relevant features. Additionally, multiple samples can be scanned in parallel and measured under identical conditions, and the high number of data points within an image can improve the statistical accuracy. Technical details of the newly designed hyperspectral imaging THz system working from 250 to 370 GHz are provided. Results from measurements of different soil samples and buried objects in soil demonstrated its performance. The system achieved an optical resolution of about 2 mm. The sensitivity of signal damping to the changes in particle size of 100 µm is about 10 dB. Therefore, particle size variations in the µm range should be detectable. In conclusion, automated hyperspectral imaging reduced experimental effort and time consumption, and provided reliable results because of the measurement of hundreds of sample positions in one run. At this stage, the proposed setup cannot replace the current standard laboratory methods, but the present study represents the initial step to develop a new automated method for soil analysis and imaging.

3.
Sensors (Basel) ; 17(10)2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29048392

ABSTRACT

Spatially resolved soil parameters are some of the most important pieces of information for precision agriculture. These parameters, especially the particle size distribution (texture), are costly to measure by conventional laboratory methods, and thus, in situ assessment has become the focus of a new discipline called proximal soil sensing. Terahertz (THz) radiation is a promising method for nondestructive in situ measurements. The THz frequency range from 258 gigahertz (GHz) to 350 GHz provides a good compromise between soil penetration and the interaction of the electromagnetic waves with soil compounds. In particular, soil physical parameters influence THz measurements. This paper presents investigations of the spectral transmission signals from samples of different particle size fractions relevant for soil characterization. The sample thickness ranged from 5 to 17 mm. The transmission of THz waves was affected by the main mineral particle fractions, sand, silt and clay. The resulting signal changes systematically according to particle sizes larger than half the wavelength. It can be concluded that THz spectroscopic measurements provide information about soil texture and penetrate samples with thicknesses in the cm range.

4.
J Chem Phys ; 142(18): 184702, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25978900

ABSTRACT

The electronic excitation spectra of charge transfer compounds built from the hydrocarbons picene and chrysene, and the strong electron acceptors F4TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) and TCNQ (7,7,8,8-tetracyanoquinodimethan) have been investigated using electron energy-loss spectroscopy. The corresponding charge transfer compounds have been prepared by co-evaporation of the pristine constituents. We demonstrate that all investigated combinations support charge transfer, which results in new electronic excitation features at low energy. This might represent a way to synthesize low band gap organic semiconductors.

5.
Inorg Chem ; 53(20): 10825-34, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25299133

ABSTRACT

Complexation of the ambidentate ligand 4-mercaptobenzoate (4-SH-C6H4CO2H, H2mba) by the macrocyclic complex [Ni2L(µ-Cl)]ClO4 (L(2-) represents a 24-membered macrocyclic hexaazadithiophenolate ligand) has been examined. The monodeprotonated Hmba(-) ligand reacts with the Ni2 complex in a selective manner by substitution of the bridging chlorido ligand to produce µ1,3-carboxylato-bridged complex [Ni2L(Hmba)](+) (2(+)), which can be isolated as an air-sensitive perchlorate (2ClO4) or tetraphenylborate (2BPh4) salt. The reactivity of the new mercaptobenzoate complex is reminiscent of that of a "free" thiophenolate ligand. In the presence of air, 2ClO4 dimerizes via a disulfide bond to generate tetranuclear complex [{Ni2L}2(O2CC6H4S)2](2+) (3(2+)). The auration of 2ClO4 with [AuCl(PPh3)], on the other hand, leads to monoaurated complex [Ni(II)2L(mba)Au(I)PPh3](+) (4(+)). The bridging thiolate functions of the N6S2 macrocycle are deeply buried and are unaffected/unreactive under these conditions. The complexes were fully characterized by electrospray ionization mass spectrometry, IR and UV/vis spectroscopy, density functional theory, cyclic voltammetry, and X-ray crystallography [for 3(BPh4)2 and 4BPh4]. Temperature-dependent magnetization and susceptibility measurements reveal an S = 2 ground state that is attained by ferromagnetic coupling between the spins of the Ni(II) ions in 2ClO4 (J = +22.3 cm(-1)) and 4BPh4 (J = +20.8 cm(-1); H = -2JS1S2). Preliminary contact-angle and X-ray photoelectron spectroscopy measurements indicate that 2ClO4 interacts with gold surfaces.

6.
J Chem Phys ; 141(9): 094706, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25194385

ABSTRACT

We have prepared phthalocyanine heterojunctions out of MnPc and F16CoPc, which were studied by means of X-ray absorption spectroscopy. This heterojunction is characterized by a charge transfer at the interface, resulting in charged MnPc(δ +) and F16CoPc(δ -) species. Our data reveal that the molecules are well ordered and oriented parallel to the substrate surface. Furthermore, we demonstrate the filling of the Co 3d(z(2)) orbital due to the charge transfer, which supports the explanation of the density functional theory, that the charge transfer is local and affects the metal centers only.

7.
Chemistry ; 19(24): 7787-801, 2013 Jun 10.
Article in English | MEDLINE | ID: mdl-23595564

ABSTRACT

A new strategy for the fixation of redox-active dinickel(II) complexes with high-spin ground states to gold surfaces was developed. The dinickel(II) complex [Ni2L(Cl)]ClO4 (1ClO4), in which L(2-) represents a 24-membered macrocyclic hexaaza-dithiophenolate ligand, reacts with ambidentate 4-(diphenylphosphino)benzoate (dppba) to form the carboxylato-bridged complex [Ni2L(dppba)](+), which can be isolated as an air-stable perchlorate [Ni2L(dppba)]ClO4 (2ClO4) or tetraphenylborate [Ni2L(dppba)]BPh4 (2BPh4) salt. The auration of 2ClO4 was probed on a molecular level, by reaction with AuCl, which leads to the monoaurated Ni(II)2Au(I) complex [Ni(II)2L(dppba)Au(I)Cl]ClO4 (3ClO4). Metathesis of 3ClO4 with NaBPh4 produces [Ni(II)2L(dppba)Au(I)Ph]BPh4 (4BPh4), in which the Cl(-) is replaced by a Ph(-) group. The complexes were fully characterized by ESI mass spectrometry, IR and UV/Vis spectroscopy, X-ray crystallography (2BPh4 and 4BPh4), cyclic voltammetry, SQUID magnetometry and HF-ESR spectroscopy. Temperature-dependent magnetic susceptibility measurements reveal a ferromagnetic coupling J = +15.9 and +17.9 cm(-1) between the two Ni(II) ions in 2ClO4 and 4BPh4 (H = -2 JS1S2). HF-ESR measurements yield a negative axial magnetic anisotropy (D<0), which implies a bistable (easy axis) magnetic ground state. The binding of the [Ni2L(dppba)]ClO4 complex to gold was ascertained by four complementary surface analytical methods: contact angle measurements, atomic-force microscopy, X-ray photoelectron spectroscopy, and spectroscopic ellipsometry. The results indicate that the complexes are attached to the Au surface through coordinative Au-P bonds in a monolayer.

8.
J Chem Phys ; 138(2): 024707, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23320713

ABSTRACT

We have prepared mixed phthalocyanine films out of MnPc and F(16)CoPc, which were characterized by means of photoemission spectroscopy and electron energy-loss spectroscopy. Our data reveal the formation of MnPc/F(16)CoPc charge transfer dimers in analogy to the related heterojunction. The electronic excitation spectrum of these blends is characterized by a new low energy excitation at 0.6 eV. Density functional theory calculations show that the new signal is caused by a strong absorption between the states of the interface induced two level system.

9.
J Chem Phys ; 137(11): 114508, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22998272

ABSTRACT

We have performed electron energy-loss spectroscopy studies in order to investigate the electronic properties of chrysene molecular solids. The valence band electronic excitation spectra and the C 1s core level excitations have been measured for pristine and potassium doped chrysene. The core level studies show a fine structure which signals the presence of four close lying conduction bands close to the Fermi level. Upon potassium doping, these bands are filled with electrons, and we have reached a doping level of about K(2.7)chrysene. Furthermore, undoped chrysene is characterized by an optical gap of about 3.3 eV and five, relatively weak, excitonic features following the excitation onset. Doping induces major changes in the electronic excitation spectra, with a new, prominent low energy excitation at about 1.3 eV. The results of a Kramers-Kronig analysis indicate that this new feature can be assigned to a charge carrier plasmon in the doped material, and momentum dependent studies reveal a negative plasmon dispersion.


Subject(s)
Chrysenes/chemistry , Electrons , Fullerenes/chemistry , Potassium/chemistry , Spectroscopy, Electron Energy-Loss , Molecular Structure
10.
J Chem Phys ; 136(13): 134503, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-22482568

ABSTRACT

The electronic structure of potassium intercalated picene and coronene films has been studied using photoemission spectroscopy. Picene has additionally been intercalated using sodium. Upon alkali metal addition core level as well as valence band photoemission data signal a filling of previously unoccupied states of the two molecular materials due to charge transfer from potassium. In contrast to the observation of superconductivity in K(x)picene and K(x)coronene (x ~ 3), none of the films studied shows emission from the Fermi level, i.e., we find no indication for a metallic ground state. Several reasons for this observation are discussed.

11.
J Chem Phys ; 136(12): 124702, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22462883

ABSTRACT

The electronic properties of p-type, n-type, and ambipolar spiro materials have been investigated using a combination of photoemission spectroscopy, electron energy-loss spectroscopy, and density functional based calculations. Our results provide insight into the occupied density of states as well as the electronic excitation spectra. Comparison of experimental and theoretical data allows the identification of the orbitals responsible for charge transport and optical properties.

12.
J Chem Phys ; 134(19): 194504, 2011 May 21.
Article in English | MEDLINE | ID: mdl-21599070

ABSTRACT

The electronic excitations of manganese phthalocyanine (MnPc) films were studied as a function of potassium doping using electron energy-loss spectroscopy in transmission. Our data reveal doping induced changes in the excitation spectrum, and they provide evidence for the existence of three doped phases: K(1)MnPc, K(2)MnPc, and K(4)MnPc. Furthermore, the addition of electrons first leads to a filling of orbitals with strong Mn 3d character, a situation which also affects the magnetic moment of the molecule.

SELECTION OF CITATIONS
SEARCH DETAIL
...