Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng Part A ; 27(21-22): 1411-1421, 2021 11.
Article in English | MEDLINE | ID: mdl-33752445

ABSTRACT

Fibrosis of the knee is a common disorder resulting from an aberrant wound healing response and is characterized by extracellular matrix deposition, joint contraction, and scar tissue formation. The principal regulator of the fibrotic cascade is transforming growth factor beta-1 (TGF-ß1), a factor that induces rapid proliferation and differentiation of resident fibroblasts. In this study, we demonstrate successful inhibition of TGF-ß1-driven myofibroblastic differentiation in human fibroblast-like synoviocytes using a small molecule TGF-ß1 receptor inhibitor, SB-431542. We also demonstrate successful encapsulation of SB-431542 in poly(D,L-lactide-co-glycolide) (PLGA) as a potential prophylactic treatment for arthrofibrosis and characterize drug release and bioactivity in a three-dimensional collagen gel contraction assay. We assessed the effects of TGF-ß1 and SB-431542 on cell proliferation and viability in monolayer cultures. Opposing dose-dependent trends were observed in cell proliferation, which increased in TGF-ß1-treated cultures and decreased in SB-431542-treated cultures relative to control (p < 0.05). SB-431542 was not cytotoxic at the concentrations studied (0-50 µM) and inhibited TGF-ß1-induced collagen gel contraction in a dose-dependent manner. Specifically, TGF-ß1-treated gels contracted to 18% ± 1% of their initial surface area, while gels treated with TGF-ß1 and ≥10 µM SB-431542 showed no evidence of contraction (p < 0.0001). Upon removal of the compound, all gels contracted to control levels after 44 h in culture, necessitating sustained delivery for prolonged inhibition. To this end, SB-431542 was encapsulated in PLGA microspheres (SBMS) that had an average diameter of 87.5 ± 24 µm and a loading capacity of 4.3 µg SB-431542 per milligram of SBMS. Functional assessment of SBMS revealed sustained inhibition of TGF-ß1-induced gel contraction as well as hallmark features of myofibroblastic differentiation, including α-smooth muscle actin expression and connective tissue growth factor production. These results suggest that SB-431542 may be used to counter TGF-ß1-driven events in the fibrotic cascade in the knee cartilage. Impact statement Arthrofibrosis is the most prevalent comorbidity resulting from orthopedic procedures such as total knee arthroplasty that is characterized by excess deposition and accumulation of extracellular matrix. Despite its prevalence, treatments are generally palliative, and there is no effective prophylactic therapy. We report that the small molecule transforming growth factor beta-1 (TGF-ß1) receptor inhibitor, SB-431542, can inhibit the TGF-ß1-driven myofibroblastic differentiation of fibroblast-like synoviocytes. To provide sustained inhibition, we explored the use of SB-laden microspheres as a prophylactic therapy in a three-dimensional contraction model of fibrosis and propose that such therapies will have the potential to improve the standard of care for arthrofibrosis.


Subject(s)
Transforming Growth Factor beta , Benzamides , Dioxoles , Humans
2.
Sci Transl Med ; 12(527)2020 01 22.
Article in English | MEDLINE | ID: mdl-31969488

ABSTRACT

Severe injuries to peripheral nerves are challenging to repair. Standard-of-care treatment for nerve gaps >2 to 3 centimeters is autografting; however, autografting can result in neuroma formation, loss of sensory function at the donor site, and increased operative time. To address the need for a synthetic nerve conduit to treat large nerve gaps, we investigated a biodegradable poly(caprolactone) (PCL) conduit with embedded double-walled polymeric microspheres encapsulating glial cell line-derived neurotrophic factor (GDNF) capable of providing a sustained release of GDNF for >50 days in a 5-centimeter nerve defect in a rhesus macaque model. The GDNF-eluting conduit (PCL/GDNF) was compared to a median nerve autograft and a PCL conduit containing empty microspheres (PCL/Empty). Functional testing demonstrated similar functional recovery between the PCL/GDNF-treated group (75.64 ± 10.28%) and the autograft-treated group (77.49 ± 19.28%); both groups were statistically improved compared to PCL/Empty-treated group (44.95 ± 26.94%). Nerve conduction velocity 1 year after surgery was increased in the PCL/GDNF-treated macaques (31.41 ± 15.34 meters/second) compared to autograft (25.45 ± 3.96 meters/second) and PCL/Empty (12.60 ± 3.89 meters/second) treatment. Histological analyses included assessment of Schwann cell presence, myelination of axons, nerve fiber density, and g-ratio. PCL/GDNF group exhibited a statistically greater average area occupied by individual Schwann cells at the distal nerve (11.60 ± 33.01 µm2) compared to autograft (4.62 ± 3.99 µm2) and PCL/Empty (4.52 ± 5.16 µm2) treatment groups. This study demonstrates the efficacious bridging of a long peripheral nerve gap in a nonhuman primate model using an acellular, biodegradable nerve conduit.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor/administration & dosage , Glial Cell Line-Derived Neurotrophic Factor/chemistry , Nerve Regeneration/physiology , Animals , Axons/drug effects , Axons/metabolism , Delayed-Action Preparations , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Macaca , Nerve Regeneration/drug effects , Schwann Cells/drug effects , Schwann Cells/metabolism
3.
Front Pharmacol ; 9: 507, 2018.
Article in English | MEDLINE | ID: mdl-29867506

ABSTRACT

Tissue engineered scaffolds for adipose restoration/repair has significantly evolved in recent years. Patients requiring soft tissue reconstruction, caused by defects or pathology, require biomaterials that will restore void volume with new functional tissue. The gold standard of autologous fat grafting (AFG) is not a reliable option. This review focuses on the latest therapeutic strategies for the treatment of adipose tissue defects using biomolecule formulations and delivery, and specifically engineered biomaterials. Additionally, the clinical need for reliable off-the-shelf therapies, animal models, and challenges facing current technologies are discussed.

4.
Acta Biomater ; 58: 26-33, 2017 08.
Article in English | MEDLINE | ID: mdl-28532902

ABSTRACT

Hydrogels derived from adipose tissue extracellular matrix (AdECM) have shown potential in the ability to generate new adipose tissue in vivo. To further enhance adipogenesis, a composite adipose derived delivery system (CADDS) containing single- and double-walled dexamethasone encapsulated microspheres (SW and DW Dex MS) has been developed. Previously, our laboratory has published the use of Dex MS as an additive to enhance adipogenesis and angiogenesis in adipose tissue grafts. In the current work, AdECM and CADDS are extensively characterized, in addition to conducting in vitro cell culture analysis. Study results indicate the AdECM used for the CADDS has minimal cellular and lipid content allowing for gelation of its collagen structure under physiological conditions. Adipose-derived stem cell (ASC) culture studies confirmed biocompatibility with the CADDS, and adipogenesis was increased in experimental groups containing the hydrogel scaffold. In vitro studies of AdECM hydrogel containing microspheres demonstrated a controlled release of dexamethasone from SW and DW formulations. The delivery of Dex MS via an injectable hydrogel scaffold combines two biologically responsive components to develop a minimally, invasive, off-the-shelf biomaterial for adipose tissue engineering. STATEMENT OF SIGNIFICANCE: Scientists and doctors have yet to develop an off-the-shelf product for patients with soft tissue defects. Recently, the use of adipose derived extracellular matrix (adECM) to generate new adipose tissue in vivo has shown great promise but individually, adECM still has limitations in terms of volume and consistency. The current work introduces a novel composite off-the-shelf construct comprised of an adECM-based hydrogel and dexamethasone encapsulated microspheres (Dex MS). The hydrogel construct serves not only as an injectable protein-rich scaffold but also a delivery system for the Dex MS for non-invasive application to the defect site. The methods and results presented are a progressive step forward in the field of adipose tissue engineering.


Subject(s)
Adipokines/chemistry , Adipose Tissue/chemistry , Drug Carriers/chemistry , Extracellular Matrix/chemistry , Hydrogels/chemistry , Adult , Female , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...