Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Res Food Sci ; 8: 100739, 2024.
Article in English | MEDLINE | ID: mdl-38708103

ABSTRACT

Pumpkin seeds are rich in protein (24-36.5%). Some of them are consumed as nuts, while others are regarded as waste and used for feeding animals. Protein hydrolysates from pumpkin seeds possess some bioactive properties, such as anti-oxidant activity. In this work, various composite alginate hydrogels contain Aloe vera, CMC, and tragacanth have been employed to protect PSPH against degradation in simulated gastrointestinal digestion (SGI) and regulate its release rate. The encapsulation efficiency of PSPH in plain alginate and beads with Aloe vera, CMC, and tragacanth combinations was 71.63, 75.63, 85.07, and 80.4%, respectively. The release rate of the plain alginate beads was %30.23 in the SGF and %52.26 in the SIF, and decreased in the composite-based beads. The highest decreasing rate in the antioxidant activity during SGI was observed in free PSPH, and the decreasing rate slowed down in the alginate-based composites. The swelling rate in plain alginate was %-23.43 and %25.43 in the SGF and SIF, respectively, and increased in the composite-based beads. The FTIR spectra of hydrogels before and after loading with PSPH showed identical absorption patterns and were similar to each other. Based on the data for SEM, it was revealed that substituting other polymers in polymer combinations with alginates resulted in a porosity reduction of the beads and smoother and more uniform surfaces. Based on the results, the combination of polysacchared with alginate could protect and increase the applicability of PSPH as a functional component in the food industry.

2.
Foods ; 10(3)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33807109

ABSTRACT

Recently, the use of bioactive compounds in improving human health has received more attention. The aim of the present study was to hydrolyze orange seed proteins using pepsin enzyme to obtain bioactive peptides as well as to study the stability of such activity after simulated gastrointestinal digestion conditions. The method was optimized using different enzyme concentrations from 1% to 3%, hydrolysis times between 2 and 5 h, and an optimal temperature of 33 °C. Biological activities including α-glucosidase inhibition, α-amylase inhibition, Angiotensin I-Converting Enzyme (ACEI) inhibition, ferric reducing antioxidant power, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity were evaluated. According to the results, a significant higher value of the biological activity (p < 0.05) was observed using an enzyme ratio of 0.03 E/S and hydrolysis time of 3.5 h. After size-exclusion chromatography separation, fractions 45-49 and 50-54 showed the highest biological roles such as antioxidant, ACEI inhibitory, and hypoglycemic. Fractions with the highest biological activity were purified using RP-HPLC and analyzed using nano-liquid chromatography and mass spectrometry. The results obtained after simulated gastrointestinal digestion indicated that peptide fractions obtained after chromatographic separation significantly maintain their activity.

3.
Foods ; 9(9)2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32887246

ABSTRACT

In this study, orange seed proteins were hydrolyzed by Alcalase enzyme at different enzyme concentrations 1-3% (v/w) and hydrolysis times (2-5 h), to obtain bioactive peptides showing antioxidant, Angiotensin-converting enzyme (ACE) -inhibitory, and hypoglycemic activities. The highest biological activities (p < 0.05) were achieved by using a hydrolysis time of 5 h and an enzyme concentration of 2%. Orange seed protein hydrolysate (OSPH) was prepared under these conditions, and peptides were isolated and purified by using size-exclusion chromatography and high-performance liquid chromatography, respectively. The fractions that showed the highest biological activities were analyzed by mass spectrometry in tandem, and a total of 63 peptide sequences were found. Moreover, the effect of simulated gastrointestinal digestion on the bioactivity of the fractions was studied, and the novel peptide sequences generated were also identified. Overall, despite there being some differences in the profile of peptide sequences obtained, the main results showed non-significant differences in the analyzed bioactivities after simulated gastrointestinal digestion.

4.
Int J Biol Macromol ; 140: 59-68, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31422189

ABSTRACT

Our aim was to produce an encapsulated powder loaded with eggplant peel extract as a natural source of color and antioxidants through gum Arabic and maltodextrin. The effect of spray drying inlet temperature (140-170°C) and various carriers (maltodextrin, gum Arabic, and their combination) on powder production yield, physical properties, flowability, color, total phenolic content (TPC), antioxidant activity, infrared spectroscopy (FTIR), microstructure and particle size were investigated. Our results revealed that physicochemical properties of powders were influenced by the carrier type and inlet temperature. Obtained powders by maltodextrin at 170°C showed the highest TPC (5.2mg/g), DPPH (73.4%), ABTS (90.5%), TEAC (2. 5mM), hydroxyl radicals scavenging activity (79.1%) and reducing power (1.2 Abs700) among all samples. FTIR spectroscopy indicated that the extract was encapsulated by the carriers. Microstructure evaluation of powders showed some hollow particles with matrix-type structures. Sensory evaluation indicated that addition of encapsulated eggplant extract into the formulation of gummy candy improved its color and overall acceptability.


Subject(s)
Free Radical Scavengers/chemistry , Gum Arabic/chemistry , Pigments, Biological/chemistry , Plant Extracts/chemistry , Polysaccharides/chemistry , Solanum melongena/chemistry , Capsules
5.
J Food Biochem ; 43(2): e12721, 2019 02.
Article in English | MEDLINE | ID: mdl-31353665

ABSTRACT

The objective of this was to determine the impact of enzymatic hydrolysis on the multifunctionality of tomato seed protein hydrolysates (TSPH) and their physicochemical properties. The enzymatic hydrolysis was performed using alcalase and two factors response surface methodology. The best conditions were 131.4 min and 3% enzyme/substrate (E/S) for antioxidant activity; 174.5 min and 2.93% E/S for angiotensin-converting enzyme (ACE) inhibition; and 66.79 min and 2.27% E/S for the calcium binding. Antioxidant and ACE hydrolysates were characterized by higher solubility, zeta potential, and thermal stability while properties of the calcium binding hydrolysate were only minimally affected by the enzymatic hydrolysis. Gel electrophoresis showed that molecular weights of polypeptides in the calcium binding TSPH were higher compared to those in ACE and antioxidant TSPHs. This was due to the low degree of hydrolysis of the calcium binding hydrolysate. PRACTICAL APPLICATIONS: Nowadays, different protein sources are used to produce protein hydrolysates containing bioactive peptides that can help alleviate oxidation of foods, oxidative stress, and chronic conditions (e.g., hypertension, diabetes, cardiovascular disorder). Hydrolyzed proteins also have the potential to increase mineral absorption through the formation of mineral-binding complexes. Biological activities of proteins and peptides from tomato processing byproduct (i.e., pomace) have received until now little attention. The determination of physicochemical properties and biological activities of the hydrolyzed proteins has application in the formulation of value-added food products for the reduction of oxidative stress and risks of developing chronic diseases. In addition, there will be a reduction of pomace waste generated by the tomato processing industry.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Antioxidants/chemistry , Plant Extracts/chemistry , Plant Proteins/chemistry , Seeds/chemistry , Solanum lycopersicum/chemistry , Calcium/chemistry , Hydrolysis , Peptides/chemistry , Renin/chemistry , Subtilisins/chemistry
6.
Food Res Int ; 116: 905-915, 2019 02.
Article in English | MEDLINE | ID: mdl-30717023

ABSTRACT

Peptides with a similar antioxidant and ACE-inhibitory activity of royal jelly (RJ) generated from Alcalase hydrolysated pollen (AHP) were predicted by Response Surface Methodology (RSM). The model equations were proposed according to the effects of time and enzyme concentration on the antioxidant and ACE-inhibitory activity. The optimum values for Alcalase concentration and hydrolysis time were 1.5% and 4 h, respectively. Later, AHP was prepared and deproteinised to be further analysed using size-exclusion chromatography (SEC). After SEC separation, fractions with the highest activity of ACE-inhibitory, DPPH radical scavenging and ferric-reducing power were purified by RP-HPLC. The highest ACE-inhibitory and DPPH scavenging activity of fractions was found 100% and 66.61%, respectively. The most active fractions were analysed by nano-liquid chromatography and mass spectrometry in tandem (nLC-MS/MS) and a total of 195 peptide sequences were identified. The origins of all peptides were herbal proteins and certain coincidences with previously described bioactive sequences were discussed.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Antioxidants/chemistry , Fatty Acids/chemistry , Peptides/chemistry , Plant Proteins/chemistry , Pollen/chemistry , Subtilisins/chemistry , Biphenyl Compounds/chemistry , Chlorides/chemistry , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Ferric Compounds/chemistry , Hydrolysis , Nanotechnology/methods , Oxidation-Reduction , Picrates/chemistry , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
7.
Int J Vitam Nutr Res ; 88(5-6): 319-343, 2018 Dec.
Article in English | MEDLINE | ID: mdl-31140388

ABSTRACT

Today, due to immobility, improper food habits, and changes in lifestyle, communities are faced with an increase in health problems such as blood pressure, cholesterol, diabetes, and thrombosis. Bioactive peptides are considered as being the main products of protein hydrolysis which exert high effects on the nervous, immune, and gastrointestinal systems. Unlike synthetic drugs, bioactive peptides have no side effects and this advantage has qualified them as an alternative to such drugs. Due to the above-mentioned properties, this paper focuses on the study of health-improving attributes of bioactive peptides such as anti-oxidative, anti-hypertensive, immunomodulatory, anti-microbial, anti-allergenic, opioid, anti-thrombotic, mineral-binding, anti-inflammatory, hypocholesterolemic, and anti-cancer effects. We also discuss the formation of bioactive peptides during fermentation, the main restrictions on the use of bioactive peptides and their applications in the field of functional foods. In general, food-derived biologically active peptides play an important role in human health and may be used in the development of novel foods with certain health claims.


Subject(s)
Cholesterol/metabolism , Food , Peptides , Cholesterol/chemistry , Fermentation , Humans , Peptides/chemistry
8.
J Food Sci Technol ; 52(6): 3242-53, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26028705

ABSTRACT

In present study, response surface methodology was used to optimize extraction condition of phenolic compounds from licorice root by microwave application. Investigated factors were solvent (ethanol 80 %, methanol 80 % and water), liquid/solid ratio (10:1-25:1) and time (2-6 min). Experiments were designed according to the central composite rotatable design. The results showed that extraction conditions had significant effect on the extraction yield of phenolic compounds and antioxidant capacities. Optimal condition in microwave assisted method were ethanol 80 % as solvent, extraction time of 5-6 min and liquid/solid ratio of 12.7/1. Results were compared with those obtained by soxhlet extraction. In soxhlet extraction, Optimum conditions were extraction time of 6 h for ethanol 80 % as solvent. Value of phenolic compounds and extraction yield of licorice root in microwave assisted (MAE), and soxhlet were 47.47 mg/g and 16.38 %, 41.709 mg/g and 14.49 %, respectively. These results implied that MAE was more efficient extracting method than soxhlet.

SELECTION OF CITATIONS
SEARCH DETAIL
...