Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(2): e24374, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38298725

ABSTRACT

This paper presents a deep learning (DL) approach for predicting survival probabilities of renal cancer patients based solely on preoperative CT imaging. The proposed approach consists of two networks: a classifier- and a survival- network. The classifier attempts to extract features from 3D CT scans to predict the ISUP grade of Renal cell carcinoma (RCC) tumors, as defined by the International Society of Urological Pathology (ISUP). Our classifier is a 3D convolutional neural network to avoid losing crucial information on the interconnection of slides in 3D images. We employ multiple procedures, including image augmentation, preprocessing, and concatenation, to improve the performance of the classifier. Given the strong correlation between ISUP grading and renal cancer prognosis in the clinical context, we use the ISUP grading features extracted by the classifier as the input to the survival network. By leveraging this clinical association and the classifier network, we are able to model our survival analysis using a simple DL-based network. We adopt a discrete LogisticHazard-based loss to extract intrinsic survival characteristics of RCC tumors from CT images. This allows us to build a completely parametric survival model that varies with patients' tumor characteristics and predicts non-proportional survival probability curves for different patients. Our results demonstrated that the proposed method could predict the future course of renal cancer with reasonable accuracy from the CT scans. The proposed method obtained an average concordance index of 0.72, an integrated Brier score of 0.15, and an area under the curve value of 0.71 on the test cohorts.

2.
Comput Methods Programs Biomed ; 244: 107978, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38113804

ABSTRACT

BACKGROUND AND OBJECTIVE: Renal cell carcinoma represents a significant global health challenge with a low survival rate. The aim of this research was to devise a comprehensive deep-learning model capable of predicting survival probabilities in patients with renal cell carcinoma by integrating CT imaging and clinical data and addressing the limitations observed in prior studies. The aim is to facilitate the identification of patients requiring urgent treatment. METHODS: The proposed framework comprises three modules: a 3D image feature extractor, clinical variable selection, and survival prediction. Based on the 3D CNN architecture, the feature extractor module predicts the ISUP grade of renal cell carcinoma tumors linked to mortality rates from CT images. Clinical variables are systematically selected using the Spearman score and random forest importance score as criteria. A deep learning-based network, trained with discrete LogisticHazard-based loss, performs the survival prediction. Nine distinct experiments are performed, with varying numbers of clinical variables determined by different thresholds of the Spearman and importance scores. RESULTS: Our findings demonstrate that the proposed strategy surpasses the current literature on renal cancer prognosis based on CT scans and clinical factors. The best-performing experiment yielded a concordance index of 0.84 and an area under the curve value of 0.8 on the test cohort, which suggests strong predictive power. CONCLUSIONS: The multimodal deep-learning approach developed in this study shows promising results in estimating survival probabilities for renal cell carcinoma patients using CT imaging and clinical data. This may have potential implications in identifying patients who require urgent treatment, potentially improving patient outcomes. The code created for this project is available for the public on: GitHub.


Subject(s)
Carcinoma, Renal Cell , Deep Learning , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/diagnostic imaging , Kidney , Tomography, X-Ray Computed/methods , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...