Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Toxicol ; 96(9): 2465-2486, 2022 09.
Article in English | MEDLINE | ID: mdl-35567602

ABSTRACT

There are limited literature data on the impact of coexposure on the toxicokinetics of pesticides in agricultural workers. Using the largely employed pyrethroid lambda-cyhalothrin (LCT) and fungicide captan as sentinel pesticides, we compared individual temporal profiles of biomarkers of exposure to LCT in strawberry field workers following an application episode of LCT alone or in coexposure with captan. Participants provided all urine voided over a 3-day period after an application of a pesticide formulation containing LCT alone (E1) or LCT mixed with captan (E2), and in some cases following re-entry in treated field (E3). Pyrethroid metabolites were measured in all urine samples, in particular 3-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethyl-cyclopropanecarboxylic acid (CFMP), 3-phenoxybenzoic acid (3-PBA), and 4-hydroxy-3-phenoxybenzoic acid (4-OH3PBA). There were no obvious differences in individual concentration-time profiles and cumulative excretion of metabolites (CFMP, 3-PBA, 4-OH3BPA) after exposure to LCT alone or in combination with captan. For most workers and exposure scenarios, CFMP was the main metabolite excreted, but time courses of CFMP in urine did not always follow that of 3-PBA and 4-OH3BPA. Given that the latter metabolites are common to other pyrethroids, this suggests that some workers were coexposed to pyrethroids other than LCT. For several workers and exposure scenarios E1 and E2, values of CFMP increased in the hours following spraying. However, for many pesticide operators, other peaks of CFMP were observed at later times, indicating that tasks other than spraying of LCT-containing formulations contributed to this increased exposure. These tasks were mainly handling/cleaning of equipment used for spraying (tractor or sprayer) or work/inspection in LCT-treated field according to questionnaire responses. Overall, this study provided novel excretion time course data for LCT metabolites valuable for interpretation of biomonitoring data in workers, but also showed that coexposure was not a major determinant of variability in exposure biomarker levels. Our analysis also pointed out the importance of measuring specific metabolites.


Subject(s)
Fragaria , Insecticides , Pesticides , Pyrethrins , Biomarkers/urine , Captan/toxicity , Environmental Monitoring , Farmers , Humans , Insecticides/pharmacokinetics , Insecticides/toxicity , Nitriles , Pesticides/toxicity , Pyrethrins/toxicity
2.
Heliyon ; 8(12): e12380, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36590505

ABSTRACT

The causative agent of Chagas disease (CD), Trypanosoma cruzi, claims thousands of lives each year. Current diagnostic tools are insufficient to ensure parasitological detection in chronically infected patients has been achieved. A host-derived metabolic signature able to distinguish CD patients from uninfected individuals and assess antiparasitic treatment efficiency is introduced. Serum samples were collected from chronic CD patients, prior to and three years after treatment, and subjected to untargeted metabolomics analysis against demographically matched CD-negative controls. Five metabolites were confirmed by high-resolution tandem mass spectrometry. Several database matches for sex steroids were significantly altered in CD patients. A murine experiment corroborated sex steroid perturbation in T. cruzi-infected mice, particularly in male animals. Proteomics analysis also found increased steroidogenesis in the testes of infected mice. Metabolic alterations identified in this study shed light on the pathogenesis and provide the basis for developing novel assays for the diagnosis and screening of CD patients.

3.
Front Psychiatry ; 11: 628, 2020.
Article in English | MEDLINE | ID: mdl-32695035

ABSTRACT

BACKGROUND: The endogenous cannabinoid system mediates the psychoactive effects of cannabis in the brain. It has been argued that this system may play a key role in the pathophysiology of schizophrenia. While some studies have consistently shown that the levels of anandamide, an endogenous cannabinoid ligand, are increased in the cerebrospinal fluid of schizophrenia patients, inconsistent results have been observed in studies measuring anandamide levels in the periphery. Here, we sought to determine if the assessment of peripheral anandamide levels in patients evaluated in a psychiatric emergency setting would show robust increases. METHODS: One hundred seven patients with a schizophrenia-spectrum disorder from the psychiatric emergency settings of the Institut Universitaire en Santé Mentale de Montréal and 36 healthy volunteers were included in the study. A subsample of thirty patients were assessed at two time points: at the emergency and at their discharge from the hospital. Anxious and depressive symptoms, sleep and substance use were assessed using self-report questionnaires. In addition to anandamide, the levels of oleoylethanolamide (OEA), an anorexigenic fatty-acid ethanolamide, were also measured, since the prevalence of the metabolic syndrome is increased in schizophrenia. Plasma levels of anandamide and OEA were measured using liquid chromatography and mass spectrometry. RESULTS: Plasma anandamide and OEA levels were significantly increased in schizophrenia patients, relative to controls (Cohen's d=1.0 and 0.5, respectively). Between-group differences remained significant after controlling for metabolic measures. No differences were observed between schizophrenia patients with and without a comorbid substance use disorder at baseline. Importantly, the levels of both endocannabinoids significantly decreased after discharge from the emergency setting. CONCLUSION: The current results add to the growing body of evidence of endocannabinoid alterations in schizophrenia. The strong elevation of plasma anandamide levels in schizophrenia patients assessed in the psychiatric emergency setting suggests that anandamide and OEA area potential biomarkers of the psychological turmoil associated with this context.

4.
J Anim Ecol ; 88(6): 940-952, 2019 06.
Article in English | MEDLINE | ID: mdl-30873614

ABSTRACT

Many studies have shown that speciation can be facilitated when a trait under divergent selection also causes assortative mating. In Müllerian mimetic butterflies, a change in wing colour pattern can cause reproductive isolation. However, colour pattern divergence does not always lead to reproductive isolation. Understanding how divergent selection affects speciation requires identifying the mechanisms that promote mate preference and/or choosiness. This study addresses whether shifts in wing colour pattern drives mate preference and reproductive isolation in the tropical butterfly genus Melinaea (Nymphalidae: Ithomiini), and focuses on five taxa that form a speciation continuum, from subspecies to fully recognized species. Using genetic markers, wing colour pattern quantification, male pheromone characterization and behavioural assays of mating preference, we characterize the extent of genetic and phenotypic differentiation between taxa and compare it to the level of reproductive isolation. We show strong premating isolation between the closely related species M. satevis and M. marsaeus, in addition to genetic and phenotypic (colour pattern and pheromones) differentiation. By contrast, M. menophilus and M. marsaeus consist of pairs of subspecies that differ for colour pattern but that cannot be differentiated genetically. Pheromonal differentiation of subspecies was significant only for M. marsaeus, although most individuals were indistinguishable. Melinaea menophilus and M. marsaeus also differ in the strength of assortative mating, suggesting that mate preference has evolved only in M. marsaeus, consistent with selection against maladaptive offspring, as subspecific 'hybrids' of M. marsaeus have intermediate, non-mimetic colour patterns, unlike those of M. menophilus which display either parental phenotypes. We conclude that a shift in colour pattern per se is not sufficient for reproductive isolation, but rather, the evolution of assortative mating may be caused by selection against maladaptive intermediate phenotypes. This study suggests that mate preference and assortative mating evolve when adaptive, and that even in the early stages of divergence, reproductive isolation can be nearly complete due to mating preferences.


Subject(s)
Butterflies , Mating Preference, Animal , Animals , Genetic Speciation , Male , Phenotype , Reproduction , Reproductive Isolation , Wings, Animal
5.
Nat Commun ; 5: 5409, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25391492

ABSTRACT

Small ubiquitin-related modifiers (SUMO) are evolutionarily conserved ubiquitin-like proteins that regulate several cellular processes including cell cycle progression, intracellular trafficking, protein degradation and apoptosis. Despite the importance of protein SUMOylation in different biological pathways, the global identification of acceptor sites in complex cell extracts remains a challenge. Here we generate a monoclonal antibody that enriches for peptides containing SUMO remnant chains following tryptic digestion. We identify 954 SUMO3-modified lysine residues on 538 proteins and profile by quantitative proteomics the dynamic changes of protein SUMOylation following proteasome inhibition. More than 86% of these SUMOylation sites have not been reported previously, including 5 sites on the tumour suppressor parafibromin (CDC73). The modification of CDC73 at K136 affects its nuclear retention within PML nuclear bodies on proteasome inhibition. In contrast, a CDC73 K136R mutant translocates to the cytoplasm under the same conditions, further demonstrating the effectiveness of our method to characterize the dynamics of lysine SUMOylation.


Subject(s)
Lysine/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Animals , Antibodies, Monoclonal/immunology , Chromatography, Affinity , Gas Chromatography-Mass Spectrometry , HEK293 Cells , Humans , Hybridomas/metabolism , Peptides/immunology , Peptides/metabolism , Proteome/metabolism , Rabbits , Small Ubiquitin-Related Modifier Proteins/immunology , Tumor Suppressor Proteins/immunology , Tumor Suppressor Proteins/metabolism
6.
J Virol ; 86(21): 11595-607, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22896614

ABSTRACT

Phosphatidylinositol-4-kinase IIIα (PI4KIIIα) is an essential host cell factor for hepatitis C virus (HCV) replication. An N-terminally truncated 130-kDa form was used to reconstitute an in vitro biochemical lipid kinase assay that was optimized for small-molecule compound screening and identified potent and specific inhibitors. Cell culture studies with PI4KIIIα inhibitors demonstrated that the kinase activity was essential for HCV RNA replication. Two PI4KIIIα inhibitors were used to select cell lines harboring HCV replicon mutants with a 20-fold loss in sensitivity to the compounds. Reverse genetic mapping isolated an NS4B-NS5A segment that rescued HCV RNA replication in PIK4IIIα-deficient cells. HCV RNA replication occurs on specialized membranous webs, and this study with PIK4IIIα inhibitor-resistant mutants provides a genetic link between NS4B/NS5A functions and PI4-phosphate lipid metabolism. A comprehensive assessment of PI4KIIIα as a drug target included its evaluation for pharmacologic intervention in vivo through conditional transgenic murine lines that mimic target-specific inhibition in adult mice. Homozygotes that induce a knockout of the kinase domain or knock in a single amino acid substitution, kinase-defective PI4KIIIα, displayed a lethal phenotype with a fairly widespread mucosal epithelial degeneration of the gastrointestinal tract. This essential host physiologic role raises doubt about the pursuit of PI4KIIIα inhibitors for treatment of chronic HCV infection.


Subject(s)
1-Phosphatidylinositol 4-Kinase/metabolism , Hepacivirus/physiology , Host-Pathogen Interactions , Virus Replication , 1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , Animals , Antiviral Agents/pharmacology , Cell Line , DNA Mutational Analysis , Drug Resistance, Viral , Enzyme Inhibitors/pharmacology , Female , Genes, Essential , Hepatocytes/enzymology , Hepatocytes/virology , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Mutant Proteins/genetics , Viral Nonstructural Proteins/genetics
7.
Mol Cell Proteomics ; 10(2): M110.004796, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21098080

ABSTRACT

The small ubiquitin-related modifier (SUMO) is a small group of proteins that are reversibly attached to protein substrates to modify their functions. The large scale identification of protein SUMOylation and their modification sites in mammalian cells represents a significant challenge because of the relatively small number of in vivo substrates and the dynamic nature of this modification. We report here a novel proteomics approach to selectively enrich and identify SUMO conjugates from human cells. We stably expressed different SUMO paralogs in HEK293 cells, each containing a His(6) tag and a strategically located tryptic cleavage site at the C terminus to facilitate the recovery and identification of SUMOylated peptides by affinity enrichment and mass spectrometry. Tryptic peptides with short SUMO remnants offer significant advantages in large scale SUMOylome experiments including the generation of paralog-specific fragment ions following CID and ETD activation, and the identification of modified peptides using conventional database search engines such as Mascot. We identified 205 unique protein substrates together with 17 precise SUMOylation sites present in 12 SUMO protein conjugates including three new sites (Lys-380, Lys-400, and Lys-497) on the protein promyelocytic leukemia. Label-free quantitative proteomics analyses on purified nuclear extracts from untreated and arsenic trioxide-treated cells revealed that all identified SUMOylated sites of promyelocytic leukemia were differentially SUMOylated upon stimulation.


Subject(s)
Proteomics/methods , Small Ubiquitin-Related Modifier Proteins/chemistry , Amino Acid Sequence , Chromatin/chemistry , Computational Biology , DNA Repair , HEK293 Cells , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Mass Spectrometry/methods , Microscopy, Confocal/methods , Molecular Sequence Data , Mutation , Proteome , Subcellular Fractions/metabolism
8.
Article in English | MEDLINE | ID: mdl-18262477

ABSTRACT

Identification, characterization and structure elucidation of human metabolites of drug candidates is crucial for the pharmaceutical industry to assess their activity against the therapeutic target of interest and potential toxicological effects. It often requires in vitro synthesis of microgram quantities of metabolites of interest with enzymatic preparations, pre-concentration of the reaction mixture by solid phase extraction (SPE), metabolite isolation using HPLC systems coupled to fraction collectors prior to nuclear magnetic resonance characterization. The method reported herein is a rapid and simple technique using solely off-line mixed phase anionic exchange lipophilic SPE cartridges to selectively isolate glucuronide and sulfate metabolites from their parent compound. This approach capitalizes on the pKa differences between the parent compound, devoided of acidic moieties, and the negatively charged glucuronide and/or sulfate metabolites. Once loaded on the SPE cartridge, the incubation mixture is washed successively with a basic aqueous solution, methanol to elute the non-anionic parent compounds, and then with an acidic methanolic solution to protonate and recover the phase II conjugates. Over 100 microg (>95% purity) of 17 alpha-ethynylestradiol-3-glucuronide and 6-gingerol-4'-glucuronide were successfully isolated using this technique, as well as glucuronide and a sulfate conjugates of 1-{4'-[(1R)-2,2-difluoro-1-hydroxyethyl]biphenyl-4-yl}cyclopropanecarboxamide (DHBC) synthesized in-house. Their structures were confirmed by Ultra Performance Liquid Chromatography coupled to Quadrupole-Time of flight (UPLC-QTof) and nuclear magnetic resonance analysis.


Subject(s)
Anions/chemistry , Chromatography, Ion Exchange/instrumentation , Metabolic Detoxication, Phase II , Solid Phase Extraction/methods , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Chromatography, Ion Exchange/methods , Glucuronides/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Intestinal Mucosa/metabolism , Intestines/chemistry , Magnetic Resonance Spectroscopy/methods , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Rats , Rats, Sprague-Dawley , Sensitivity and Specificity , Solid Phase Extraction/instrumentation , Solvents/chemistry , Spectrometry, Mass, Electrospray Ionization/instrumentation , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...