Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacy (Basel) ; 10(5)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36287453

ABSTRACT

Illegible prescriptions are an illegal, frequent, and longstanding problem for pharmacy personnel engaged in dispensing. These contribute to patient safety issues and negatively impact safe dispensing in pharmaceutical delivery. To date, little is documented on measures taken to assess the negative impact posed by illegible prescriptions on South African pharmacy dispensing personnel. Therefore, this pilot study was performed to evaluate the ability of pharmacy personnel to read and interpret illegible prescriptions correctly; and to report on their perceived challenges, views and concerns when presented with an illegible prescription to dispense. A cross-sectional, three-tiered self-administered survey was conducted among pharmacy personnel. A total of 885 measurements were recorded. The ability to read an illegible prescription is not an indicator of competency, as all (100%) participants (novice and experienced) made errors and experienced difficulty evaluating and deciphering the illegible prescription. The medication names and dosages were correctly identified by only 20% and 18% of all participants. The use of digital prescriptions was indicated by 70% of the participants as a probable solution to the problem. Overall, improving the quality of written prescriptions and instructions can potentially assist dispensing pharmacy personnel in reducing illegible prescription-related patient safety issues and dispensing errors.

2.
Biomater Sci ; 6(11): 2812-2837, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30255869

ABSTRACT

Biomaterials are being utilized to engender biomimetic, pro-regenerative constructs in the form of 3D scaffolds to augment functional neural tissue (brain tissue) repair and regeneration. Tissue engineered three-dimensional (3D) scaffolds have shown various degrees of experimental success, indicating great potential for development as treatment options. However, there is yet to be a 3D scaffold that exhibits consummate results of an effective clinical standard. Critical assessment of the performance of current 3D scaffolds could provide insightful feedback for tailoring future 3D scaffolds towards more promising results. This review provides a critical analysis of current 3D scaffolds for neural tissue engineering. Architectural properties, such as porosity, swelling, and architectural influences, such as design approach and polymeric material choice, were scrutinized for suitability for the desired tissue target properties. Success and shortcomings of various 3D scaffolds were evaluated through the analysis of tissue integration of the 3D scaffold in vivo. Investigations focused on in this review included those: (1) reporting at an in vivo experimental level in animal models, (2) involving polymer-based (natural/synthetic) scaffolds described as possessing a '3D' architecture, (3) targeting brain tissue regeneration (4) published from 2011 onward.


Subject(s)
Brain/physiopathology , Nerve Regeneration , Neurons/physiology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Biomimetic Materials/chemistry , Humans , Polymers/chemistry , Printing, Three-Dimensional , Regenerative Medicine
SELECTION OF CITATIONS
SEARCH DETAIL
...