Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(45): 31374-31381, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37961857

ABSTRACT

Cation migration coupled with oxygen vacancy formation is known to drive the layered to disordered spinel/rock-salt phase transformation in the high-Ni layered oxide cathodes of Li-ion batteries. However, the effect of different electronic states of oxygen vacancies on the cation migration still remains elusive. Here, we investigate Ni migration in delithiated Ni-rich Li0.5Ni0.8Mn0.1Co0.1O2 (hence Li0.5NMC811) in the presence of neutral and charged oxygen vacancies by means of first-principles density functional theory (DFT) calculations coupled with the nudged elastic band (NEB) method. We find that oxygen vacancies with neutral or +2 charge favor the Ni migration to Li tetrahedral and/or octahedral sites, both thermodynamically and kinetically. As for the case of +1 charged oxygen vacancies, while they thermodynamicaly favor the Ni migration to the Li site, the relatively high migration barrier suggests that they kinetically prohibit the Ni migration. Our results suggest that controlling the formation of oxygen vacancies is the key to enhancing the Ni-rich NMC structural stability in particular in their charged states.

2.
J Phys Chem C Nanomater Interfaces ; 127(22): 10737-10747, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37313122

ABSTRACT

Quantum-well (QW) hybrid organic-inorganic perovskite (HOIP) crystals, e.g., A2PbX4 (A = BA, PEA; X = Br, I), demonstrated significant potentials as scintillating materials for wide energy radiation detection compared to their individual three-dimensional (3D) counterparts, e.g., BPbX3 (B = MA). Inserting 3D into QW structures resulted in new structures, namely A2BPb2X7 perovskite crystals, and they may have promising optical and scintillation properties toward higher mass density and fast timing scintillators. In this article, we investigate the crystal structure as well as optical and scintillation properties of iodide-based QW HOIP crystals, A2PbI4 and A2MAPb2I7. A2PbI4 crystals exhibit green and red emission with the fastest PL decay time <1 ns, while A2MAPb2I7 crystals exhibit a high mass density of >3.0 g/cm3 and tunable smaller bandgaps <2.1 eV resulting from quantum and dielectric confinement. We observe that A2PbI4 and PEA2MAPb2I7 show emission under X- and γ-ray excitations. We further observe that some QW HOIP iodide scintillators exhibit shorter radiation absorption lengths (∼3 cm at 511 keV) and faster scintillation decay time components (∼0.5 ns) compared to those of QW HOIP bromide scintillators. Finally, we investigate the light yields of iodide-based QW HOIP crystals at 10 K (∼10 photons/keV), while at room temperature they still show pulse height spectra with light yields between 1 and 2 photons/keV, which is still >5 times lower than those for bromides. The lower light yields can be the drawbacks of iodide-based QW HOIP scintillators, but the promising high mass density and decay time results of our study can provide the right pathway for further improvements toward fast-timing applications.

3.
Inorg Chem ; 62(23): 8892-8902, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37236171

ABSTRACT

Two-dimensional hybrid-organic-inorganic perovskite (2D-HOIP) lead bromide perovskite crystals have demonstrated great potential as scintillators with high light yields and fast decay times while also being low cost with solution-processable materials for wide energy radiation detection. Ion doping has been also shown to be a very promising avenue for improvements of the scintillation properties of 2D-HOIP crystals. In this paper, we discuss the effect of rubidium (Rb) doping on two previously reported 2D-HOIP single crystals, BA2PbBr4 and PEA2PbBr4. We observe that doping the perovskite crystals with Rb ions leads to an expansion of the crystal lattices of the materials, which also leads to narrowing of band gaps down to 84% of the pure compounds. Rb doping of BA2PbBr4 and PEA2PbBr4 shows a broadening in the photoluminescence and scintillation emissions of both perovskite crystals. Rb doping also leads to faster γ-ray scintillation decay times, as fast as 4.4 ns, with average decay time decreases of 15% and 8% for Rb-doped BA2PbBr4 and PEA2PbBr4, respectively, compared to those of undoped crystals. The inclusion of Rb ions also leads to a slightly longer afterglow, with residual scintillation still being below 1% after 5 s at 10 K, for both undoped and Rb-doped perovskite crystals. The light yield of both perovskites is significantly increased by Rb doping with improvements of 58% and 25% for BA2PbBr4 and PEA2PbBr4, respectively. This work shows that Rb doping leads to a significant enhancement of the 2D-HOIP crystal performance, which is of particular significance for high light yield and fast timing applications, such as photon counting or positron emission tomography.

4.
Phys Chem Chem Phys ; 24(7): 4196-4203, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35119442

ABSTRACT

Understanding the factors that influence the activity of a catalyst toward CH4 activation is of high importance for tuning the catalyst performance or designing new, better catalysts. Here, we performed a set of density functional theory (DFT) calculations on the H-CH3 bond cleavage over the Cu-O-Cu active site in the MOR zeolite with various Al-pair arrangements to obtain molecular insight into the structure-activity relation and clarify key parameters that define the Cu-O-Cu reactivity toward CH4. We found that weakening of the Cu-O-Cu bond during CH4 activation is crucial for determining the O-H bond strength and thus the Cu-O-Cu reactivity. In this regard, the zeolite lattice constraints are found to play a significant role as, on the one hand, it strengthens the Cu⋯Cu interaction and consequently weakens the Cu-O-Cu bonds and, on the other hand, it forces the Cu-O-Cu bond elongation process to destabilize the active site structure. The non-planar Cu-O-Cu geometry, due to lattice constraints, is also found to make the CH4 adsorption site, whether positioned closer to the µ-O or the Cu atom, crucial in determining the C-H activation product, i.e., a ˙CH3 radical or a Cu2-CH3- ligand.

5.
RSC Adv ; 11(34): 20635-20640, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-35479341

ABSTRACT

We report the optical and scintillation properties of (C6H5CH2NH3)2SnBr4 with excellent absorption length at 20 keV of 0.016 cm, measured bandgap of 2.51 eV, and photoluminescence lifetime of 1.05 µs. The light yield obtained with the 241Am source is 3600 ± 600 photons per MeV, which is much smaller than the maximum attainable light yield obtained from the bandgap. Temperature dependent radioluminescence measurements confirm the presence of thermal quenching at room temperature with the activation energy and the ratio between the attempt and the radiative transition rates of 61 meV and 129, respectively. Although thermal quenching affects light yield at room temperature, this green light-emitting perovskite opens an avenue for new lead-free scintillating materials.

6.
Inorg Chem ; 59(1): 415-422, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31829576

ABSTRACT

An iridium aqua complex [IrIII(η5-C5Me5){bpy(COOH)2}(H2O)]2+ under visible light irradiation has been experimentally reported to form an iridium-oxo (Ir-oxo) complex [IrV(η5-C5Me5){bpy(COOH)2}(O)]2+, which oxidizes H2O to O2. However, the mechanism for the formation of this Ir-oxo complex remains unclear, due to the difficulties in observing the unstable Ir-oxo complex and computing light-induced systems having different numbers of electrons. In this study, we perform density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations to investigate more in detail our previously proposed deprotonation and light-induced oxidation reactions composing the formation of the Ir-oxo complex. In particular, we discuss effects of light irradiation and WO3 support on the formation of the Ir-oxo complex. We suggest two distinct mechanisms, that is, direct and indirect for the light-induced oxidation. In the direct mechanism electrons are directly transferred from the occupied π* orbitals of IrIII-OH or IrIV=O• to the conduction band of the WO3 surface, whereas in the indirect mechanism electrons are first excited from the valence band to the conduction band of the WO3 surface due to the UV light, and then the resultant electron hole oxidizes the Ir complex. In the direct mechanism, in particular, we found that the lowest energy of the anode's conduction band determines the adsorption wavelength of the light irradiation, enabling us to predict alternative semiconductor anodes for more efficient formation of the Ir-oxo complex.

7.
Inorg Chem ; 58(11): 7274-7284, 2019 Jun 03.
Article in English | MEDLINE | ID: mdl-31094515

ABSTRACT

While hydrogenase and photosystem II enzymes are known to oxidize H2 and H2O, respectively, a recently reported iridium aqua complex [IrIII(η5-C5Me5){bpy(COOH)2}(H2O)]2+ is able to oxidize both of the molecules and generate energies as in the fuel and solar cells ( Ogo ChemCatChem 2017 , 9 , 4024 - 4028 ). To understand the mechanism behind such an interesting bifunctional catalyst, in the present study, we perform density functional theory (DFT) calculations on the dual catalytic cycle of H2 and H2O oxidations by the iridium aqua complex. In the H2 oxidation, we found that the H-H bond is easily cleaved in a heterolytic fashion, and the resultant iridium hydride complex is significantly stabilized by the presence of H2O molecules, due to dihydrogen bond. The rate-determining step of this reaction is found to be the H2O → H2 ligand substitution with an activation energy of 10.7 kcal/mol. In the H2O oxidation, an iridium oxo complex originating from an oxidation of the iridium aqua complex forms a hydroperoxide complex, where an O-O bond is formed with an activation energy of 21.0 kcal/mol. Such a relatively low activation barrier is possible only when at least two H2O molecules are present in the reaction, allowing the water nucleophilic attack (WNA) mechanism to take place. The present study suggests and discusses in detail six reaction steps required for the dual catalytic cycle to complete.

SELECTION OF CITATIONS
SEARCH DETAIL
...