Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 13: 878898, 2022.
Article in English | MEDLINE | ID: mdl-35685625

ABSTRACT

Background: Alcoholic liver disease (ALD) is a common chronic liver disorder worldwide, which is detrimental to human health. A preliminary study showed that the total flavonoids within Citrus grandis "Tomentosa" exerted a remarkable effect on the treatment of experimental ALD. However, the active substances of Citrus grandis "Tomentosa" were not elucidated. Rhoifolin (ROF) is a flavonoid component present in high levels. Therefore, this research aimed to evaluate the hepatoprotective effects of ROF and its possible mechanisms. Methods: Molecular docking was performed to analyze the binding energy of ROF to the main target proteins related to ALD. Subsequently, mice were fed ethanol (ETH) for 49 days to establish the chronic alcoholic liver injury models. The liver pathological injury, serum aminotransferase levels, and oxidative stress levels in the liver tissue were measured. Human normal hepatocytes (LO2 cells) were incubated with ETH to construct the alcoholic liver cell model. The inflammatory markers and apoptosis factors were evaluated using real-time PCR and flow cytometry. Finally, the effects of ROF on the CYP2E1 and NF-κB signaling pathways were tested in vitro and in vivo. Results: Molecular docking results demonstrated that ROF was able to successfully dock with the target proteins associated with ALD. In animal studies, ROF attenuated ETH-induced liver damage in mice by decreasing the serum concentrations of AST and ALT, reducing the expression of inflammatory cytokines, and maintaining antioxidant balance in the liver tissue. The in vitro experiments demonstrated that ROF suppressed ETH-induced apoptosis in LO2 cells by promoting Bcl-2 mRNA and inhibiting Bax mRNA and caspase 3 protein expression. ROF decreased the level of LDH, ALT, AST, ROS, and MDA in the supernatant; induced the activity of GSH and SOD; and inhibited TNF-α, IL-6, and IL-1ß expression levels. Mechanistically, ROF could significantly downregulate the expression levels of CYP2E1, TLR4, and NF-κB phosphorylation. Conclusion: This study indicates that ROF is the active component within the total flavonoids, which may alleviate ETH-induced liver injury by inhibiting NF-κB phosphorylation. Therefore, ROF may serve as a promising compound for treating ALD.

2.
Inflammation ; 43(6): 2191-2201, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32617861

ABSTRACT

Rhoifolin (ROF) is a main effective component in Citrus grandis 'Tomentosa'. ROF has a potential anti-inflammatory activity, but its specific effects and mechanisms have not been studied. This study investigated the anti-inflammatory activity of ROF and searched for its possible molecular mechanisms. A mouse model of acute inflammation was induced by lipopolysaccharide, and the effects of ROF on pathological damages of the lung and liver were observed. Carrageenan-induced paw edema rat model was used to evaluate the effect of ROF on the volume of swelling paw. In LPS-induced RAW264.7 macrophages, the expression levels of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α were measured using ELISA. Real-time PCR was used to measure the mRNA levels of iNOS and CCL2. Western blot was used to detect the activation of IκBα and IKKß in NF-κB signaling pathways. The results showed that ROF accelerated the recoveries of liver and lung tissue damages in acute inflammation mice and inhibited carrageenan-induced paw edema in rats; in addition, ROF significantly suppressed the secretion of TNF-α, IL-1ß, and IL-6 in the serum of rats and mouse model. In LPS-induced RAW264.7 cells, 100 µmol/L ROF enhanced cell viability and suppressed the production of TNF-α, IL-6, and IL-1ß significantly. ROF also decreased the mRNA expression of iNOS and CCL2 and inhibited IκBα and IKKß phosphorylation. In summary, ROF had a potential therapeutic value for inflammation. Our research provided experimental basis for the further development of ROF as an anti-inflammatory drug and for clarifying the anti-inflammatory substance basis of Citrus grandis 'Tomentosa'. Graphical Abstract.


Subject(s)
Disaccharides/pharmacology , Flavonoids/pharmacology , Glycosides/pharmacology , I-kappa B Kinase/metabolism , Inflammation/metabolism , Lipopolysaccharides/metabolism , NF-kappa B/metabolism , Animals , Carrageenan , Cell Survival , Citrus , Cytokines/metabolism , Edema , Mice , Phosphorylation , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...