Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 14(11): 3380-90, 2008.
Article in English | MEDLINE | ID: mdl-18260069

ABSTRACT

Uniform CeO(2) nanoflowers were synthesized by rapid thermolysis of (NH(4))(2)Ce(NO(3))(6) in oleic acid (OA)/oleylamine (OM), by a unique 3D oriented-attachment mechanism. CeO(2) nanoflowers with controlled shape (cubic, four-petaled, and starlike) and tunable size (10-40 nm) were obtained by adjusting the reaction conditions including solvent composition, precursor concentration, reaction temperature, and reaction time. The nanoflower growth mechanism was investigated by in situ electrical conductance measurements, transmission electron microscopy, and UV/Vis spectroscopy. The CeO(2) nanoflowers are likely formed in two major steps, that is, initial formation of ceria cluster particles capped with various ligands (e.g., OA, OM, and NO(3) (-)) via hydrolysis of (NH(4))(2)Ce(NO(3))(6) at temperatures in the range 140-220 degrees C, and subsequent spontaneous organization of the primary particles into nanoflowers by 3D oriented attachment, due to a rapid decrease in surface ligand coverage caused by sudden decomposition of the precursor at temperatures above 220 degrees C in a strong redox reaction. After calcination at 400 degrees C for 4 h the 33.8 nm CeO(2) nanoflowers have a specific surface area as large as 156 m(2) g(-1) with high porosity, and they are highly active for conversion of CO to CO(2) in the low temperature range of 200-400 degrees C. The present approach has also been extended to the preparation of other transition metal oxide (CoO, NiO, and CuO(x)) nanoflowers.


Subject(s)
Cerium/chemistry , Electric Conductivity , Nanostructures , Surface-Active Agents/chemistry , Catalysis , Microscopy, Electron, Transmission , X-Ray Diffraction
2.
J Am Chem Soc ; 128(19): 6426-36, 2006 May 17.
Article in English | MEDLINE | ID: mdl-16683808

ABSTRACT

We report a general synthesis of high-quality cubic (alpha-phase) and hexagonal (beta-phase) NaREF4 (RE: Pr to Lu, Y) nanocrystals (nanopolyhedra, nanorods, nanoplates, and nanospheres) and NaYF(4):Yb,Er/Tm nanocrystals (nanopolyhedra and nanoplates) via the co-thermolysis of Na(CF3COO) and RE(CF3COO)3 in oleic acid/oleylamine/1-octadecene. By tuning the ratio of Na/RE, solvent composition, reaction temperature and time, we can manipulate phase, shape, and size of the nanocrystals. On the basis of its alpha --> beta phase transition behavior, along the rare-earth series, NaREF4 can be divided into three groups (I: Pr and Nd; II: Sm to Tb; III: Dy to Lu, Y). The whole controlled-synthesis mechanism can be explained from the point of view of free energy. Photoluminescent measurements indicate that the value of I610/I590 and the overall emission intensity of the NaEuF4 nanocrystals are highly correlative with the symmetries of the Eu3+ ions in both the lattice and the surface.

3.
J Phys Chem B ; 109(51): 24380-5, 2005 Dec 29.
Article in English | MEDLINE | ID: mdl-16375438

ABSTRACT

Single-crystalline and uniform nanopolyhedra, nanorods, and nanocubes of cubic CeO2 were selectively prepared by a hydrothermal method at temperatures in the range of 100-180 degrees C under different NaOH concentrations, using Ce(NO3)3 as the cerium source. According to high-resolution transmission electron microscopy, they have different exposed crystal planes: {111} and {100} for polyhedra, {110} and {100} for rods, and {100} for cubes. During the synthesis, the formation of hexagonal Ce(OH)3 intermediate species and their transformation into CeO2 at elevated temperature, together with the base concentration, have been demonstrated as the key factors responsible for the shape evolution. Oxygen storage capacity (OSC) measurements at 400 degrees C revealed that the oxygen storage takes place both at the surface and in the bulk for the as-obtained CeO2 nanorods and nanocubes, but is restricted at the surface for the nanopolyhedra just like the bulk one, because the {100}/{110}-dominated surface structures are more reactive for CO oxidation than the {111}-dominated one. This result suggests that high OSC materials might be designed and obtained by shape-selective synthetic strategy.


Subject(s)
Cerium/chemistry , Nanostructures/chemistry , Oxygen/chemistry , Temperature , Crystallization , Microscopy, Electron, Transmission , Nanostructures/ultrastructure , Nanotubes/chemistry , Nanotubes/ultrastructure , Sodium Hydroxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...