Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Total Environ ; 923: 171352, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38432387

ABSTRACT

Industrial emissions are significant sources of volatile organic compounds (VOCs). This study conducted a field campaign at high temporal and spatial resolution to monitor VOCs within three plants in an industrial park in southern China. VOC concentrations showed significant spatial variability in this industrial zone, with median concentrations of 75.22, 40.53, and 29.41 µg/m3 for the total VOCs in the three plants, respectively, with oxygenated VOCs (OVOCs) or aromatics being the major VOCs. Spatial variability within each plant was also significant but VOC-dependent. Seasonal variations in the VOC levels were governed by their industrial emissions, meteorological conditions, and photochemical losses, and they were different for the four groups of VOCs. The temporal and spatial variations in the VOC compositions suggest similar sources of each class of VOCs during different periods of the year in each plant. The diurnal patterns of VOCs (unimodal or bimodal) clearly differed from those at most industrial/urban locations previously, reflecting a dependence on industrial activities. The secondary transformation potential of VOCs also varied temporally and spatially, and aromatics generally made the predominant contributions in this industrial park. The loss rate of OH radicals and ozone formation potential were highly correlated, but the linear relationship substantially changed in summer and autumn due to the intensive emissions of an OVOC species. The lifetime cancer and non-cancer risks via occupational inhalation of the VOCs in the plants were acceptable but merit attention. Taking the secondary transformation potential and health risks into consideration, styrene, xylene, toluene, trichloroethylene, and benzene were proposed to be the priority VOCs regulated in the plants.

2.
Environ Sci Technol ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316131

ABSTRACT

China's online food delivery (OFD) services consume enormous amounts of disposable plastics. Here, we investigated and modeled the national mass inventories and environmental release of plastics and chemical additives in the plastic. The extra-tree regression identified six key descriptors in determining OFD sales in Chinese cities. Approximately 847 kt of OFD plastic waste was generated in 2021 (per capita 1.10 kg/yr in the megacities and 0.39 kg/yr in other cities). Various additives were extensively detected, with geomean concentrations of 140.96, 4.76, and 0.25 µg/g for ∑8antioxidants, ∑21phthalates, and bisphenol A (BPA), respectively. The estimated mass inventory of these additives in the OFD plastics was 164.7 t, of which 51.1 t was released into the atmosphere via incineration plants and 51.0 t was landfilled. The incineration also released 8.07 t of polycyclic aromatic hydrocarbons and 39.1 kt of particulate matter into the atmosphere. Takeout food may increase the dietary intake of phthalates and BPA by 30% to 50% and raise concerns about considerable exposure to antioxidant transformation products. This study provides profound environmental implications for plastic waste in the Chinese OFD industry. We call for a sustainable circular economy action plan for waste disposal, but mitigating the hazardous substance content and their emissions is urgent.

SELECTION OF CITATIONS
SEARCH DETAIL
...