Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 263(Pt 1): 130204, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38365154

ABSTRACT

Polyhydroxyalkanoates (PHAs) are a group of natural polyesters that are synthesised by microorganisms. In general, their thermoplasticity and (in some forms) their elasticity makes them attractive alternatives to petrochemical-derived polymers. However, the high crystallinity of some PHAs - such as poly(3-hydroxybutyrate) (P3HB) - results in brittleness and a narrow processing window for applications such as packaging. The production of copolymeric PHA materials is one approach to improving the mechanical and thermal properties of PHAs. Another solution is the manufacture of PHA-based block copolymers. The incorporation of different polymer and copolymer blocks coupled to PHA, and the resulting tailorable microstructure of these block copolymers, can result in a step-change improvement in PHA-based material properties. A range of production strategies for PHA-based block copolymers has been reported in the literature, including biological production and chemical synthesis. Biological production is typically less controllable, with products of a broad molecular weight and compositional distribution, unless finely controlled using genetically modified organisms. By contrast, chemical synthesis delivers relatively controllable block structures and narrowly defined compositions. This paper reviews current knowledge in the areas of the production and properties of PHA-based block copolymers, and highlights knowledge gaps and future potential areas of research.


Subject(s)
Polyhydroxyalkanoates , Polyesters/chemistry , Physical Phenomena
2.
Polymers (Basel) ; 15(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37571152

ABSTRACT

Bacterially derived polyhydroxyalkanoates (PHAs) are attractive alternatives to commodity petroleum-derived plastics. The most common forms of the short chain length (scl-) PHAs, including poly(3-hydroxybutyrate) (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), are currently limited in application because they are relatively stiff and brittle. The synthesis of PHA-b-PHA block copolymers could enhance the physical properties of PHAs. Therefore, this work explores the synthesis of PHBV-b-PHBV using relatively high molecular weight hydroxy-functionalised PHBV starting materials, coupled using facile diisocyanate chemistry, delivering industrially relevant high-molecular-weight block copolymeric products. A two-step synthesis approach was compared with a one-step approach, both of which resulted in successful block copolymer production. However, the two-step synthesis was shown to be less effective in building molecular weight. Both synthetic approaches were affected by additional isocyanate reactions resulting in the formation of by-products such as allophanate and likely biuret groups, which delivered partial cross-linking and higher molecular weights in the resulting multi-block products, identified for the first time as likely and significant by-products in such reactions, affecting the product performance.

3.
Sci Rep ; 7(1): 4818, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28684795

ABSTRACT

Ecosystem activation system (EAS) was developed to create beneficial conditions for microbiome recovery and then restore and maintain the ecological integrity (microbial community, phytoplankton, zooplankton) for eutrophic freshwater rehabilitation. A 30 day's filed test of EAS indicated that over 50% of contaminant was removed and the algae visibly disappeared. EAS treatment 2.5-fold increased the diversity of microbial community and changed the microbial community structure (e.g., two and three-fold decrease in the amount of Flavobacterium and Pseudomonas, typical abundant species of eutrophic freshwater, respectively). Further, the diversity of phytoplankton and zooplankton of treated water suggested that these species were diverse. Representative phytoplankton of eutrophic freshwater, Chlorella and Chlamydomonas were undetectable. The possible mechanism of EAS is restoring the trophic levels of the water body via bottom-up approach by microbial community.


Subject(s)
Eutrophication/drug effects , Fresh Water/microbiology , Green Chemistry Technology , Polyhydroxyalkanoates/pharmacology , Animals , Biodegradation, Environmental , Biodiversity , China , Chlamydomonas/growth & development , Chlorella/growth & development , Ecosystem , Flavobacterium/growth & development , Fresh Water/chemistry , Humans , Microbial Consortia/drug effects , Microbial Consortia/physiology , Phytoplankton/drug effects , Polyhydroxyalkanoates/chemistry , Pseudomonas/growth & development , Zooplankton/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...