Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
World J Psychiatry ; 14(9): 1335-1345, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39319235

ABSTRACT

BACKGROUND: Depression presents significant challenges to mental health care. Although physical activity is highly beneficial to mental and physical health, relatively few studies have conducted on the relationship between them. AIM: To investigate the association between muscle quality index (MQI) and incidence of depression. METHODS: The data used in this cross-sectional study were obtained from the 2011-2014 National Health and Nutritional Examination Survey, which included information on MQI, depression, and confounding factors. Multivariable logistic regression models were employed, while taking into account the complex multi-stage sampling design. A restricted cubic spline model was utilized to investigate the non-linear relationship between the MQI and depression. Additionally, subgroup analyses were performed to identify influential factors. RESULTS: The prevalence of depression in this population was 8.44%. With the adjusted model, the MQI was associated with depression in females (odds ratio = 0.68, 95% confidence interval: 0.49-0.95) but not in males (odds ratio = 1.08, 95% confidence interval: 0.77-1.52). Restricted cubic spline adjustment of all covariates showed a significant negative non-linear relationship between depression and the MQI in females. The observed trend indicated an 80% decrease in the risk of depression for each unit increase in MQI, until a value of 2.2. Subsequently, when the MQI exceeded 2.2, the prevalence of depression increased by 20% for every unit increase in the MQI. Subgroup analyses further confirmed that the MQI was negatively associated with depression. CONCLUSION: The MQI was inversely correlated with depression in females but not males, suggesting that females with a higher MQI might decrease the risk of depression.

2.
Eur J Pharmacol ; 979: 176832, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39038639

ABSTRACT

The contractile function of vascular smooth muscle cells (VSMCs) typically undergoes significant changes with advancing age, leading to severe vascular aging-related diseases. The precise role and mechanism of stromal interaction molecule-1 (STIM1) in age-mediated Ca2+ signaling and vasocontraction remain unclear. The connection between STIM1 and age-related vascular dysfunction was investigated using a multi-myograph system, immunohistochemical analysis, protein blotting, and SA-ß-gal staining. Results showed that vasoconstrictor responses in the thoracic aorta, intrarenal artery, and coronary artery decreased with age. STIM1 knockdown in the intrarenal and coronary arteries reduced vascular tone in young mice, while no change was observed in the thoracic aorta. A significant reduction in vascular tone occurred in the STIM1 knockout group with nifedipine. In the thoracic aorta, vasoconstriction significantly decreased with age following the use of nifedipine and thapsigargin and almost disappeared after STIM1 knockdown. The proportion of senescent VSMCs increased significantly in aged mice and further increased in sm-STIM1 KO aged mice. Moreover, the expression of senescence markers p21, p16, and IL-6 significantly increased with age, with p21 expression further increased in the STIM1 knockdown aged group, but not p16 or IL-6. These findings indicate that different arteries exhibit distinct organ-specific features and that STIM1 downregulation may contribute to age-related vasoconstrictive dysfunction through activation of the p21 pathway.


Subject(s)
Aging , Coronary Vessels , Down-Regulation , Stromal Interaction Molecule 1 , Vasoconstriction , Animals , Stromal Interaction Molecule 1/metabolism , Stromal Interaction Molecule 1/genetics , Vasoconstriction/drug effects , Mice , Coronary Vessels/metabolism , Coronary Vessels/physiopathology , Aging/metabolism , Male , Mice, Knockout , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Renal Artery/metabolism , Cellular Senescence/drug effects , Interleukin-6/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Aorta/metabolism , Aorta/drug effects
3.
Diabetes Metab Syndr Obes ; 16: 1731-1743, 2023.
Article in English | MEDLINE | ID: mdl-37323855

ABSTRACT

Background: Profilin-1 (PFN1) regulates the dynamic balance of actin and plays an important role in cell functions as a hub protein in signaling molecule interaction networks. Dysregulation of PFN1 is related to pathologic kidney diseases. Diabetic nephropathy (DN) was recently reported as an inflammatory disorder, however, the molecular mechanisms of PFN1 in DN remain unclear. Therefore, the present study was conducted to explore the molecular and bioinformatic characteristics of PFN1 in DN. Methods: Bioinformatics analyses were performed on the chip of database in DN kidney tissues. A cellular model of DN was established in human renal tubular epithelial cells (HK-2) induced by high glucose. The PFN1 gene was overexpressed or knocked-down to investigate its function in DN. Flow cytometry was used to detect cell proliferation and apoptosis. PFN1 and proteins in the related signaling pathways were evaluated by Western blotting. Results: The expression of PFN1 was significantly increased in DN kidney tissues (P < 0.001) and was correlated with a high apoptosis-associated score (Pearson's correlation = 0.664) and cellular senescence-associated score (Pearson's correlation = 0.703). PFN1 protein was mainly located in cytoplasm. Overexpression of PFN1 promoted apoptosis and blocked the proliferation of HK-2 cells treated with high levels of glucose. Knockdown of PFN1 led to the opposite effects. Additionally, we found that PFN1 was correlated with the inactivation of the Hedgehog signaling pathway in HK-2 cells treated with high levels of glucose. Conclusion: PFN1 might play an integral role in the regulation of cell proliferation and apoptosis during DN development by activating the Hedgehog signaling pathway. This study provided molecular and bioinformatic characterizations of PFN1, and contributed to the understanding of the molecular mechanisms leading to DN.

4.
Stem Cells Int ; 2021: 5555590, 2021.
Article in English | MEDLINE | ID: mdl-34484348

ABSTRACT

METHODS: Hypoxia in hBMSCs was induced for 0, 4, and 12 hours, and cellular senescence was evaluated by senescence-associated ß-galactosidase (SA-ß-gal) staining. Tandem mass tag (TMT) labeling was combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for differential proteomic analysis of hypoxia in hBMSCs. Parallel reaction monitoring (PRM) analysis was used to validate the candidate proteins. Verifications of signaling pathways were evaluated by western blotting. Cell apoptosis was evaluated using Annexin V/7-AAD staining by flow cytometry. The production of reactive oxygen species (ROS) was detected by the fluorescent probe 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA). RESULTS: Cell senescence detected by SA-ß-gal activity was higher in the 12-hour hypoxia-induced group. TMT analysis of 12-hour hypoxia-induced cells identified over 6000 proteins, including 686 differentially expressed proteins. Based on biological pathway analysis, we found that the senescence-associated proteins were predominantly enriched in the cancer pathways, PI3K-Akt pathway, and cellular senescence signaling pathways. CDK1, CDK2, and CCND1 were important nodes in PPI analyses. Moreover, the CCND1, UQCRH, and COX7C expressions were verified by PRM. Hypoxia induction for 12 hours in hBMSCs reduced CCND1 expression but promoted ROS production and cell apoptosis. Such effects were markedly reduced by the PI3K agonist, 740 Y-P, and attenuated by LY294002. CONCLUSIONS: Hypoxia of hBMSCs inhibited CCND1 expression but promoted ROS production and cell apoptosis through activating the PI3K-dependent signaling pathway. These findings provided a detailed characterization of the proteomic profiles related to hypoxia-induced senescence of hBMSCs and facilitated our understanding of the molecular mechanisms leading to stem cell senescence.

5.
Int J Clin Pharmacol Ther ; 58(10): 575-582, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32729819

ABSTRACT

PURPOSE: Memantine is currently the only drug that acts on the glutamate energy system to treat Alzheimer's disease. A generic memantine tablet was developed to offer an alternative to the marketed tablet formulation. The purpose of this study was to assess the bioequivalence of two different memantine formulations among healthy male Chinese subjects under fasting and fed conditions. MATERIALS AND METHODS: We carried out single-center, randomized, single-dose, open-label, two-period, cross-over studies which including 20 healthy male Chinese subjects under fasting and fed conditions, respectively. Plasma samples were collected prior to and up to 240 hours after dosing. Key pharmacokinetic parameters including area under the plasma concentration-time curve from time zero to the last measurable concentration (AUC0-t), area from time zero to infinite (AUC0-∞), and Cmax were used for bioequivalence assessment. RESULTS: Under fasting condition, the 90% CIs of the geometric mean ratios of the test/reference drug for memantine were 106.5 - 114.0% for Cmax, 99.4 - 107.9% for AUC0-t, and 100.0 - 109.6% for AUC0-∞. Under fed condition, the 90% CIs of the geometric mean ratios of the test/reference drug for memantine were 94.8 - 104.3% for Cmax, 98.2 - 110.5% for AUC0-t, and 99.2 - 113.0% for AUC0-∞. CONCLUSION: The observed pharmacokinetic parameters of memantine of the test drug were similar to those of the reference formulation both in the fasting and fed state. That is to say, the test formulation of memantine 10-mg tablet is bioequivalent to the reference formulation (Ebixa 10-mg tablet).


Subject(s)
Fasting , Area Under Curve , Cross-Over Studies , Humans , Male , Memantine , Tablets , Therapeutic Equivalency
6.
J Mol Cell Cardiol ; 141: 82-92, 2020 04.
Article in English | MEDLINE | ID: mdl-32222458

ABSTRACT

Vascular dysfunction is a common pathological basis for complications in individuals affected by diabetes. Previous studies have established that endothelial dysfunction is the primary contributor to vascular complications in type 2 diabetes (T2DM). However, the role of vascular smooth muscle cells (VSMCs) in vascular complications associated with T2DM is still not completely understood. The aim of this study is to explore the potential mechanisms associated with Ca2+ handling dysfunction and how this dysfunction contributes to diabetic vascular smooth muscle impairment. The results indicated that endothelium-dependent vasodilation was impaired in diabetic aortae, but endothelium-independent vasodilation was not altered. Various vasoconstrictors such as phenylephrine, U46619 and 5-HT could induce vasoconstriction in a concentration-dependent manner, such that the dose-response curve was parallel shifted to the right in diabetic aortae, compared to the control. Vasoconstrictions mediated by L-type calcium (Cav1.2) channels were attenuated in diabetic aortae, but effects mediated by store-operated calcium (SOC) channels were enhanced. Intracellular Ca2+ concentration ([Ca2+]i) in VSMCs was detected by Fluo-4 calcium fluorescent probes, and demonstrated that SOC-mediated Ca2+ entry was increased in diabetic VSMCs. VSMC-specific knockout of STIM1 genes decreased SOC-mediated and phenylephrine-induced vasoconstrictive response in mice aortae. Additionally, Orai1 expression was up-regulated, Cav1.2 expression was downregulated, and the phenotypic transformation of diabetic VSMCs was determined in diabetic aortae. The overexpression of Orai1 markedly promoted the OPN expression of VSMCs, whereas SKF96365 (SOC channel blocker) reversed the phenotypic transformation of diabetic VSMCs. Our results demonstrated that the vasoconstriction response of aortic smooth muscle was weakened in type 2 diabetic rats, which was related to the downregulation of the Cav1.2 channel and the up-regulation of the SOC channel signaling pathway.


Subject(s)
Aorta/physiopathology , Calcium Signaling , Calcium/metabolism , Diabetes Mellitus, Experimental/physiopathology , Muscle Contraction/physiology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/pathology , Animals , Biomarkers/metabolism , Calcium Channels/metabolism , Diabetes Mellitus, Experimental/blood , Gene Knockdown Techniques , Inhibitory Concentration 50 , Male , Phenotype , Phenylephrine/pharmacology , Rats, Zucker , Stromal Interaction Molecule 1/metabolism , Vasoconstriction , Vasodilation/physiology
7.
Front Pharmacol ; 10: 209, 2019.
Article in English | MEDLINE | ID: mdl-30936830

ABSTRACT

Objectives: This study aimed to elucidate the contribution of candidate single nucleotide polymorphisms (SNPs) related to pharmacokinetics on the recovery of platelet function after single dose of ticagrelor was orally administered to healthy Chinese subjects. Methods: The pharmacokinetic profiles of ticagrelor and its metabolite AR-C124910XX (M8), and the platelet aggregation (PA), were assessed after 180 mg of single-dose ticagrelor was orally administered to 51 healthy Chinese subjects. Effects of CYP2C19 * 2, CYP2C19 * 3, CYP3A5 * 3, UGT1A1 * 6, UGT1A1 * 28, UGT2B7 * 2, UGT2B7 * 3, SLCO1B1 388A>G, and SLCO1B1 521T>C, on the pharmacokinetics of ticagrelor and M8, and platelet function recovery were investigated. Results: The time to recover 50% of the maximum drug effect (RT50) ranging from 36 to 126 h with 46.9% CV had a remarkable individual difference and was positively associated with the half-life (t1/2) of M8 (r = 0.3901, P = 0.0067). The time of peak concentration (Tmax) of ticagrelor for CYP2C19*3 GG homozygotes was significantly higher than that of GA heterozygotes (P = 0.0027, FDR = 0.0243). Decreased peak concentration (Cmax) of M8 was significantly associated with SLCO1B1 388A>G A allele (P = 0.0152, FDR = 0.1368). CYP2C19 * 2 A was significantly related to decreased Cmax of M8 (P = 0.0455, FDR = 0.2048). While, the influence of these nine SNPs on the recovery of platelet function was not significant. Conclusion: Our study suggests that the elimination of M8 is an important factor in determining the recovery of platelet function. Although CYP2C19 and SLCO1B1 genetic variants were related to the pharmacokinetics of ticagrelor or M8, they did not show a significant effect on the platelet function recovery in this study. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT03092076, identifier: NCT03092076.

8.
Clin Exp Pharmacol Physiol ; 46(7): 643-651, 2019 07.
Article in English | MEDLINE | ID: mdl-30907443

ABSTRACT

Thromboxane A2 (TXA2 ) has been implicated in the pathogenesis of vascular complications, but the underlying mechanism remains unclear. The contraction of renal arterial rings in mice was measured by a Multi Myograph System. The intracellular calcium concentration ([Ca2+ ]i ) in vascular smooth muscle cells (VSMCs) was obtained by using a fluo-4/AM dye and a confocal laser scanning microscopy. The results show that the U46619-induced vasoconstriction of renal artery was completely blocked by a TXA2 receptor antagonist GR32191, significantly inhibited by a selective phospholipase C (PI-PLC) inhibitor U73122 at 10 µmol/L and partially inhibited by a Phosphatidylcholine - specific phospholipase C (PC-PLC) inhibitor D609 at 50 µmol/L. Moreover, the U46619-induced vasoconstriction was inhibited by a general protein kinase C (PKC) inhibitor chelerythrine at 10 µmol/L, and a selective PKCδ inhibitor rottlerin at 10 µmol/L. In addition, the PKC-induced vasoconstriction was partially inhibited by a Rho-kinase inhibitor Y-27632 at 10 µmol/L and was further completely inhibited together with a putative IP3 receptor antagonist and store-operated Ca2+ (SOC) entry inhibitor 2-APB at 100 µmol/L. On the other hand, U46619-induced vasoconstriction was partially inhibited by L-type calcium channel (Cav1.2) inhibitor nifedipine at 1 µmol/L and 2-APB at 50 and 100 µmol/L. Last, U46619-induced vasoconstriction was partially inhibited by a cell membrane Ca2+ activated C1- channel blocker 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) at 50 and 100 µmol/L. Our results suggest that the U46619-induced contraction of mouse intrarenal arteries is mediated by Cav1.2 and SOC channel, through the activation of thromboxane-prostanoid receptors and its downstream signaling pathway.


Subject(s)
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Arteries/drug effects , Arteries/physiology , Vasoconstriction/drug effects , Animals , Calcium Channels/metabolism , Chloride Channels/antagonists & inhibitors , Kidney/blood supply , Male , Mice , Mice, Inbred C57BL , Type C Phospholipases/metabolism , rho-Associated Kinases/metabolism
9.
Int J Anal Chem ; 2018: 6959761, 2018.
Article in English | MEDLINE | ID: mdl-30302091

ABSTRACT

BACKGROUND: Both cis- and trans-cefprozil have antimicrobial activity, but their potencies are quite different. It is therefore necessary to develop a sensitive method to simultaneously determine both isomers for pharmacokinetic and bioequivalence studies. METHODS: An LC-MS/MS method, using stable isotope-labeled cefprozil as the internal standard, was developed and validated. The analytes were extracted from plasma by protein precipitation and separated on a reverse-phase C18 column using a gradient program consisting of 0.5% formic acid and acetonitrile within 4 min. The mass spectrometry acquisition was performed with multiple reaction monitoring in positive ion mode using the respective [M+H]+ ions, m/z 391.2→114.0 for cefprozil and 395.0→114.5 for cefprozil-D4. RESULTS: The calibration curves were linear over the ranges of 0.025-15 µg/mL for cis-cefprozil and 0.014-1.67 µg/mL for trans-cefprozil. The accuracies for the cis and trans isomers of cefprozil were 93.1% and 103.0%, respectively. The intra- and interassay precisions for the QC samples of the isomers were < 14.3%. The intra- and interassay precisions at the LLOQ were < 16.5%. CONCLUSIONS: The method was sensitive and reproducible and was applied in a pilot pharmacokinetic study of healthy volunteers.

10.
Clin Pharmacokinet ; 57(7): 817-829, 2018 07.
Article in English | MEDLINE | ID: mdl-28875477

ABSTRACT

INTRODUCTION AND OBJECTIVE: The relationship between either paraoxonase 1 (PON1) gene promoter DNA methylation or genetic variations and bleeding or major adverse cardiac events after dual antiplatelet therapy has been incompletely characterized. We aimed to systematically investigate the role of genetic variations and DNA methylation of the PON1 CpG island promoter on the clinical outcomes of dual antiplatelet therapy for patients with coronary artery disease (CAD) who underwent percutaneous coronary intervention (PCI). METHODS: This study included 653 patients with CAD undergoing PCI and receiving dual antiplatelet therapy. Genomic DNAs were isolated from whole blood and were genotyped for the three single nucleotide polymorphisms (SNPs) of the PON1 gene. The DNA methylation levels in the PON1 promoter region were determined by bisulfite sequencing or pyrosequencing at five CpG sites (positions -142, -161, -163, -170, and -184 from the transcription start site). Clopidogrel and its metabolites in plasma were examined using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), and platelet function analysis was performed using the VerifyNow assay. RESULTS: Statistically significant associations between methylation levels at five PON1 CpG sites and bleeding were observed: -184 [odds ratio (OR) 0.98, 95% confidence interval (CI) 0.96-1.00, p = 0.028]; -170 (OR 0.99, 95% CI 0.97-1.00, p = 0.048); -163 (OR 0.98, 95% CI 0.96-1.00, p = 0.029); -161 (OR 0.98, 95% CI 0.97-1.00, p = 0.026); and -142 (OR 0.98, 95% CI 0.97-1.00, p = 0.042) at a false discovery rate of <5%. Statistical analysis also revealed that aspirin reaction units (ARUs) were significantly associated with PON1 methylation level at CpG site -163 (p = 0.0342). The ARUs of patients with the PON1 126 CC genotype was 527 ± 94, which was higher than the ARUs (473 ± 89) of patients with the 126 CG genotype (p = 0.0163). Multivariate logistic regression analysis indicated that the PON1 methylation level at CpG site -161 (OR 0.95, 95% CI 0.92-0.98, p = 0.002) and the use of angiotensin-converting enzyme inhibitors (OR 0.48, 95% CI 0.26-0.89, p = 0.021) were associated with a decreased risk of bleeding events. CONCLUSIONS: Hypomethylation of CpGs in the PON1 promoter may be a weak, albeit statistically significant, risk factor of bleeding after dual antiplatelet therapy. Further large-scale studies are needed to verify our results.


Subject(s)
Aryldialkylphosphatase/genetics , DNA Methylation/genetics , Genetic Variation/genetics , Percutaneous Coronary Intervention/trends , Platelet Aggregation Inhibitors/administration & dosage , Promoter Regions, Genetic/genetics , Adult , Aged , Aged, 80 and over , Base Sequence , Coronary Artery Disease/diagnosis , Coronary Artery Disease/genetics , Coronary Artery Disease/therapy , DNA Methylation/drug effects , Female , Genetic Variation/drug effects , Hemorrhage/chemically induced , Hemorrhage/diagnosis , Hemorrhage/genetics , Humans , Male , Middle Aged , Percutaneous Coronary Intervention/adverse effects , Platelet Aggregation Inhibitors/adverse effects , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/drug effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL