Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Interdiscip Sci ; 14(2): 285-310, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34826045

ABSTRACT

At the initial stage of drug discovery, identifying novel targets with maximal efficacy and minimal side effects can improve the success rate and portfolio value of drug discovery projects while simultaneously reducing cycle time and cost. However, harnessing the full potential of big data to narrow the range of plausible targets through existing computational methods remains a key issue in this field. This paper reviews two categories of in silico methods-comparative genomics and network-based methods-for finding potential therapeutic targets among cellular functions based on understanding their related biological processes. In addition to describing the principles, databases, software, and applications, we discuss some recent studies and prospects of the methods. While comparative genomics is mostly applied to infectious diseases, network-based methods can be applied to infectious and non-infectious diseases. Nonetheless, the methods often complement each other in their advantages and disadvantages. The information reported here guides toward improving the application of big data-driven computational methods for therapeutic target discovery.


Subject(s)
Drug Discovery , Genomics , Drug Discovery/methods
2.
Front Chem ; 6: 138, 2018.
Article in English | MEDLINE | ID: mdl-29868550

ABSTRACT

This article is a systematic review of reverse screening methods used to search for the protein targets of chemopreventive compounds or drugs. Typical chemopreventive compounds include components of traditional Chinese medicine, natural compounds and Food and Drug Administration (FDA)-approved drugs. Such compounds are somewhat selective but are predisposed to bind multiple protein targets distributed throughout diverse signaling pathways in human cells. In contrast to conventional virtual screening, which identifies the ligands of a targeted protein from a compound database, reverse screening is used to identify the potential targets or unintended targets of a given compound from a large number of receptors by examining their known ligands or crystal structures. This method, also known as in silico or computational target fishing, is highly valuable for discovering the target receptors of query molecules from terrestrial or marine natural products, exploring the molecular mechanisms of chemopreventive compounds, finding alternative indications of existing drugs by drug repositioning, and detecting adverse drug reactions and drug toxicity. Reverse screening can be divided into three major groups: shape screening, pharmacophore screening and reverse docking. Several large software packages, such as Schrödinger and Discovery Studio; typical software/network services such as ChemMapper, PharmMapper, idTarget, and INVDOCK; and practical databases of known target ligands and receptor crystal structures, such as ChEMBL, BindingDB, and the Protein Data Bank (PDB), are available for use in these computational methods. Different programs, online services and databases have different applications and constraints. Here, we conducted a systematic analysis and multilevel classification of the computational programs, online services and compound libraries available for shape screening, pharmacophore screening and reverse docking to enable non-specialist users to quickly learn and grasp the types of calculations used in protein target fishing. In addition, we review the main features of these methods, programs and databases and provide a variety of examples illustrating the application of one or a combination of reverse screening methods for accurate target prediction.

SELECTION OF CITATIONS
SEARCH DETAIL
...