Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 136: 309-321, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30509812

ABSTRACT

In this study, we used high-throughput sequencing of 16S rRNA gene amplicons, to investigate the spatio-temporal variation in bacterial communities in surface-waters collected from eight major outlets of the Pearl River Estuary, South China. Betaproteobacteria were the most abundant class among the communities, followed by Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, and Acidimicrobiia. Generally, alpha-diversity increased in winter communities and the taxonomic diversity of bacterial communities differed with seasonal and spatial differences. Temperature, conductivity, salinity, pH and nutrients were the crucial environmental factors associated with shifts in the bacterial community composition. Furthermore, inferred community functions that were associated with amino acid, carbohydrate and energy metabolisms were lower in winter, whereas the relative abundance of inferred functions associated with membrane transport, bacterial motility proteins, and xenobiotics biodegradation and metabolism, were enriched in winter. These results provide new insights into the dynamics of bacterial communities within estuarine ecosystems.


Subject(s)
Environmental Monitoring/methods , Estuaries , Proteobacteria/classification , Rivers/microbiology , Biodiversity , China , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Rivers/chemistry , Salinity , Seasons , Water Pollution/analysis
2.
Vet Parasitol ; 211(1-2): 1-11, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-25997646

ABSTRACT

Cryptocaryoniasis is a severe disease of farmed marine fish caused by the parasitic ciliate Cryptocaryon irritans. This disease can lead to considerable economic loss, but studies on proteins linked to disease development and antigenic proteins for vaccine development have been relatively scarce to date. In this study, 53 protein spots with differential abundance, representing 12 proteins, were identified based on a pair-wise comparison among theronts, trophonts, and tomonts. Meanwhile, 33 protein spots that elicited serological responses in rabbits were identified, representing 9 proteins. In addition, 27 common antigenic protein spots reacted with grouper anti-sera, representing 10 proteins. Most of the identified proteins were involved in cytoskeletal and metabolic pathways. Among these proteins, actin and α-tubulin appeared in all three developmental stages with differences in molecular weights and isoelectric points; 4 proteins (vacuolar ATP synthase catalytic subunit α, mcm2-3-5 family protein, 26S proteasome subunit P45 family protein and dnaK protein) were highly expressed only in theronts; while protein kinase domain containing protein and heat shock protein 70 showed high levels of expression only in trophonts and tomonts, respectively. Moreover, actin was co-detected with 3 rabbit anti-sera while ß-tubulin, V-type ATPase α subunit family protein, heat shock protein 70, mitochondrial-type hsp70, and dnaK proteins showed immunoreactivity with corresponding rabbit anti-sera in theronts, trophonts, and tomonts. Furthermore, ß-tubulin, the metabolic-related protein enolase, NADH-ubiquinone oxidoreductase 75 kDa subunit, malate dehydrogenase, as well as polypyrimidine tract-binding protein, glutamine synthetase, protein kinase domain containing protein, TNFR/NGFR cysteine-rich region family protein, and vacuolar ATP synthase catalytic subunit α, were commonly detected by grouper anti-sera. Therefore, these findings could contribute to an understanding of the differences in gene expression and phenotypes among the different stages of parasitic infection, and might be considered as a source of candidate proteins for disease diagnosis and vaccine development.


Subject(s)
Ciliophora/metabolism , Fish Diseases/parasitology , Proteomics , Animals , Ciliophora Infections/parasitology , Fishes , Tubulin/metabolism
3.
Dev Comp Immunol ; 46(2): 267-78, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24844613

ABSTRACT

Nonspecific cytotoxic cells (NCCs) are an important cytotoxic cell population in the innate teleost immune system. The receptor designated "NCC receptor protein 1" (NCCRP-1) has been reported to be involved in the recognition and activation of NCCs. In this study, the full-length cDNA of Epinephelus coioides NCCRP-1 (ecnccrp-1) was cloned. The open reading frame (ORF) of ecnccrp-1 is 699 bp, encoding a 232 amino acid protein that includes proline-rich motifs at the N-terminus and is related to the F-box associated family. Although a bioinformatics analysis showed that EcNCCRP-1 had no signal peptide or transmembrane helices, a polyclonal antibody directed against recombinant EcNCCRP-1 efficiently labeled a membrane protein in the head kidney, detected with Western blot analysis, which indicated that the protein localized to the cell surface. RT-PCR showed that the constitutive expression of ecnccrp-1 was higher in the lymphoid organs, such as the trunk kidney, spleen, head kidney, and thymus, and lower in brain, heart, fat, liver, muscle, and skin. After infection with Cryptocaryon irritans, the transcription of ecnccrp-1 was analyzed at the infected sites (skin and gills) and in the systemic immune organs (head kidney and spleen). At the infected sites, especially the skin, ecnccrp-1 expression was upregulated at 6h post infection, reaching peak expression on day 3 post the primary infection. However, the expression patterns differed in the systemic immune organs. In the spleen, ecnccrp-1 was gradually increased in the early infection period and decreased sharply on day 3 post the primary infection, whereas in the head kidney, the transcription of ecnccrp-1 was depressed during almost the whole course of infection. An immunohistochemical analysis showed that EcNCCRP-1(+) cells accumulated at the sites of infection with C. irritans. These results suggested that NCCs were involved in the process of C. irritans infection in E. coioides.


Subject(s)
Ciliophora Infections/veterinary , Fish Diseases/immunology , Fish Proteins/genetics , Perciformes/genetics , Receptors, Antigen/genetics , Amino Acid Sequence , Animals , Base Sequence , Cells, Cultured , Ciliophora/physiology , Ciliophora Infections/immunology , Ciliophora Infections/metabolism , Cloning, Molecular , Conserved Sequence , Fish Diseases/metabolism , Fish Diseases/parasitology , Fish Proteins/biosynthesis , Gene Expression/immunology , Host-Parasite Interactions , Molecular Sequence Data , Organ Specificity , Perciformes/immunology , Perciformes/parasitology , Phylogeny , Receptors, Antigen/biosynthesis
4.
Vet Microbiol ; 170(1-2): 135-43, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24594355

ABSTRACT

Streptococcus agalactiae is a major piscine pathogen, which causes significant morbidity and mortality among numerous fish species, and results in huge economic losses to aquaculture. Many S. agalactiae strains showing different virulence characteristics have been isolated from infected tilapia in different geographical regions throughout South China in the recent years, including natural attenuated S. agalactiae strain TFJ0901 and virulent S. agalactiae strain THN0901. In the present study, survival of tilapia challenged with S. agalactiae strain TFJ0901 and THN0901 (10(7)CFU/fish) were 93.3% and 13.3%, respectively. Moreover, there are severe lesions of the examined tissues in tilapia infected with strain THN0901, but no significant histopathological changes were observed in tilapia infected with the strain TFJ0901. In order to elucidate the factors responsible for the invasive potential of S. agalactiae between two strains TFJ0901 and THN0901, a comparative proteome analysis was applied to identify the different protein expression profiles between the two strains. 506 and 508 cellular protein spots of S. agalactiae TFJ0901 and THN0901 were separated by two dimensional electrophoresis, respectively. And 34 strain-specific spots, corresponding to 27 proteins, were identified successfully by MALDI-TOF mass spectrometry. Among them, 23 proteins presented exclusively in S. agalactiae TFJ0901 or THN0901, and the other 4 proteins presented in different isomeric forms between TFJ0901 and THN0901. Most of the strain-specific proteins were just involved in metabolic pathways, while 7 of them were presumed to be responsible for the virulence differences of S. agalactiae strain TFJ0901 and THN0901, including molecular chaperone DnaJ, dihydrolipoamide dehydrogenase, thioredoxin, manganese-dependent inorganic pyrophosphatase, elongation factor Tu, bleomycin resistance protein and cell division protein DivIVA. These virulence-associated proteins may contribute to identify new diagnostic markers and help to understand the pathogenesis of S. agalactiae.


Subject(s)
Fish Diseases/microbiology , Proteome/genetics , Streptococcal Infections/veterinary , Streptococcus agalactiae/genetics , Streptococcus agalactiae/pathogenicity , Virulence/genetics , Animals , Aquaculture , China , Fish Diseases/mortality , Fish Diseases/pathology , Gene Expression Regulation, Bacterial , Streptococcal Infections/microbiology , Streptococcal Infections/mortality , Streptococcal Infections/pathology , Streptococcus agalactiae/isolation & purification , Tilapia/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...