Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Regen ; 13(1): 9, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630195

ABSTRACT

Human hematopoiesis starts at early yolk sac and undergoes site- and stage-specific changes over development. The intrinsic mechanism underlying property changes in hematopoiesis ontogeny remains poorly understood. Here, we analyzed single-cell transcriptome of human primary hematopoietic stem/progenitor cells (HSPCs) at different developmental stages, including yolk-sac (YS), AGM, fetal liver (FL), umbilical cord blood (UCB) and adult peripheral blood (PB) mobilized HSPCs. These stage-specific HSPCs display differential intrinsic properties, such as metabolism, self-renewal, differentiating potentialities etc. We then generated highly co-related gene regulatory network (GRNs) modules underlying the differential HSC key properties. Particularly, we identified GRNs and key regulators controlling lymphoid potentiality, self-renewal as well as aerobic respiration in human HSCs. Introducing selected regulators promotes key HSC functions in HSPCs derived from human pluripotent stem cells. Therefore, GRNs underlying key intrinsic properties of human HSCs provide a valuable guide to generate fully functional HSCs in vitro.

2.
Stem Cell Reports ; 19(2): 196-210, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38215759

ABSTRACT

Emergency myelopoiesis (EM) is essential in immune defense against pathogens for rapid replenishing of mature myeloid cells. During the EM process, a rapid cell-cycle switch from the quiescent hematopoietic stem cells (HSCs) to highly proliferative myeloid progenitors (MPs) is critical. How the rapid proliferation of MPs during EM is regulated remains poorly understood. Here, we reveal that ATG7, a critical autophagy factor, is essential for the rapid proliferation of MPs during human myelopoiesis. Peripheral blood (PB)-mobilized hematopoietic stem/progenitor cells (HSPCs) with ATG7 knockdown or HSPCs derived from ATG7-/- human embryonic stem cells (hESCs) exhibit severe defect in proliferation during fate transition from HSPCs to MPs. Mechanistically, we show that ATG7 deficiency reduces p53 localization in lysosome for a potential autophagy-mediated degradation. Together, we reveal a previously unrecognized role of autophagy to regulate p53 for a rapid proliferation of MPs in human myelopoiesis.


Subject(s)
Myelopoiesis , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Hematopoietic Stem Cells/metabolism , Myeloid Cells , Autophagy/genetics
3.
Stem Cell Res ; 65: 102980, 2022 12.
Article in English | MEDLINE | ID: mdl-36436397

ABSTRACT

The mitochondrial fission protein 1 (FIS1) is essential for mitochondrial division or fission and has been determined to mediate mitochondrial and peroxisomal fission. Other studies also found that FIS1 functions as an essential component of the mitophagy and apoptosis pathways in mammalian cells, suggesting that FIS1 has multiple important roles. Here, we generated homozygous FIS1 knockout human embryonic stem cells (hESCs) using the CRISPR/Cas9 system. This cell line exhibits normal karyotype, pluripotency, and trilineage differentiation potential, which could provide a useful cellular resource for exploring the functions of FIS1 and their implications in human health and diseases.


Subject(s)
Gene Editing , Human Embryonic Stem Cells , Membrane Proteins , Mitochondrial Proteins , Humans , Cell Line , CRISPR-Cas Systems , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Gene Knockout Techniques
4.
Cell Prolif ; 55(5): e13244, 2022 May.
Article in English | MEDLINE | ID: mdl-35504619

ABSTRACT

OBJECTIVES: During embryonic haematopoiesis, haematopoietic stem/progenitor cells (HSPCs) develop from hemogenic endothelial cells (HECs) though endothelial to haematopoietic transition (EHT). However, little is known about how EHT is regulated in human. Here, we report that GFI1 plays an essential role in enabling normal EHT during haematopoietic differentiation of human embryonic stem cells (hESCs). RESULTS: GFI1 deletion in hESCs leads to a complete EHT defect due to a closed chromatin state of hematopoietic genes in HECs. Mechanically, directly regulates important signaling pathways essential for the EHT such as PI3K signaling.etc. CONCLUTIONS: Together, our findings reveal an essential role of GFI1 mediated epigenetic mechanism underlying human EHT during hematopoiesis.


Subject(s)
Chromatin , Hemangioblasts , Cell Differentiation/physiology , Chromatin/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Hemangioblasts/metabolism , Hematopoiesis/physiology , Humans , Phosphatidylinositol 3-Kinases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Biochim Biophys Acta Mol Basis Dis ; 1868(5): 166357, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35143932

ABSTRACT

The epigenetic treatment by 3-Deazaneplanocin A (DZNep), a histone methyltransferase inhibitor, shows great potential against acute myeloid leukemia (AML). However, the variant sensitivity and incomplete response to DZNep are commonly observed. Here, we reveal that vitamin C (Vc) dramatically promotes DZNep response against leukemic cells in different cell lines and primary AML samples. Vc enhances apoptosis and differentiation induced by DZNep in different AML cell lines in vitro and reduces leukemia progression in vivo. At the molecular level, Vc downregulates an enzyme of serine synthesis named D-3-phosphoglycerate dehydrogenase (PHGDH), as well as BCL2, an anti-apoptotic gene. Over-expression of PHGDH reverses the Vc-enhanced anti-leukemic effect of DZNep in AML cells. Therefore, our findings provide an effective approach to reduce the resistance against epigenetic treatment by Vc, which shows a potential improvement of their combination in AML patients.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Leukemia, Myeloid, Acute , Adenosine/analogs & derivatives , Ascorbic Acid/pharmacology , Enhancer of Zeste Homolog 2 Protein/genetics , Histone Methyltransferases , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism
6.
Cell Discov ; 6(1): 89, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33298886

ABSTRACT

Definitive hematopoiesis generates hematopoietic stem/progenitor cells (HSPCs) that give rise to all mature blood and immune cells, but remains poorly defined in human. Here, we resolve human hematopoietic populations at the earliest hematopoiesis stage by single-cell RNA-seq. We characterize the distinct molecular profiling between early primitive and definitive hematopoiesis in both human embryonic stem cell (hESC) differentiation and early embryonic development. We identify CD44 to specifically discriminate definitive hematopoiesis and generate definitive HSPCs from hESCs. The multipotency of hESCs-derived HSPCs for various blood and immune cells is validated by single-cell clonal assay. Strikingly, these hESCs-derived HSPCs give rise to blood and lymphoid lineages in vivo. Lastly, we characterize gene-expression dynamics in definitive and primitive hematopoiesis and reveal an unreported role of ROCK-inhibition in enhancing human definitive hematopoiesis. Our study provides a prospect for understanding human early hematopoiesis and a firm basis for generating blood and immune cells for clinical purposes.

7.
J Biol Chem ; 294(37): 13657-13670, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31341023

ABSTRACT

Hematopoietic stem cells (HSCs)/progenitor cells (HPCs) are generated from hemogenic endothelial cells (HECs) during the endothelial-to-hematopoietic transition (EHT); however, the underlying mechanism remains poorly understood. Here, using an array of approaches, including CRSPR/Cas9 gene knockouts, RNA-Seq, ChIP-Seq, ATAC-Seq etc., we report that vitamin C (Vc) is essential in HPC generation during human pluripotent stem cell (hPSC) differentiation in defined culture conditions. Mechanistically, we found that the endothelial cells generated in the absence of Vc fail to undergo the EHT because of an apparent failure in opening up genomic loci essential for hematopoiesis. Under Vc deficiency, these loci exhibited abnormal accumulation of histone H3 trimethylation at Lys-27 (H3K27me3), a repressive histone modification that arose because of lower activities of demethylases that target H3K27me3. Consistently, deletion of the two H3K27me3 demethylases, Jumonji domain-containing 3 (JMJD3 or KDM6B) and histone demethylase UTX (UTX or KDM6A), impaired HPC generation even in the presence of Vc. Furthermore, we noted that Vc and jmjd3 are also important for HSC generation during zebrafish development. Together, our findings reveal an essential role for Vc in the EHT for hematopoiesis, and identify KDM6-mediated chromatin demethylation as an important regulatory mechanism in hematopoietic cell differentiation.


Subject(s)
Ascorbic Acid/metabolism , Hematopoietic Stem Cells/metabolism , Histone Demethylases/metabolism , Animals , Animals, Genetically Modified , Cell Differentiation/genetics , Cell Differentiation/physiology , Chromatin/metabolism , Chromatin/physiology , Demethylation , Endothelial Cells/metabolism , Histone Demethylases/genetics , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism , Lysine/metabolism , Methylation , Pluripotent Stem Cells/metabolism , Zebrafish/genetics
8.
Nat Commun ; 9(1): 4649, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30405129

ABSTRACT

Human pluripotent stem cells (hPSCs) exhibit very limited contribution to interspecies chimeras. One explanation is that the conventional hPSCs are in a primed state and so unable  to form chimeras in pre-implantation embryos. Here, we show that the conventional hPSCs undergo rapid apoptosis when injected into mouse pre-implantation embryos. While, forced-expression of BMI1, a polycomb factor in hPSCs overcomes the apoptosis and enables hPSCs to integrate into mouse pre-implantation embryos and subsequently contribute to chimeras with both embryonic and extra-embryonic tissues. In addition, BMI1 also enables hPSCs to integrate into pre-implantation embryos of other species, such as rabbit and pig. Notably, BMI1 high expression and anti-apoptosis are also indicators for naïve hPSCs to form chimera in mouse embryos. Together, our findings reveal that the apoptosis is an initial barrier in interspecies chimerism using hPSCs and provide a rational to improve it.


Subject(s)
Chimerism , Pluripotent Stem Cells/metabolism , Polycomb Repressive Complex 1/metabolism , Animals , Apoptosis , Blastocyst/cytology , Blastocyst/metabolism , Cell Lineage , Extraembryonic Membranes/metabolism , Humans , Mice, Inbred ICR , Pluripotent Stem Cells/cytology , Rabbits , Species Specificity , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...