Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 207: 108324, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183903

ABSTRACT

Three genes encoding mitochondrial uncoupling proteins (UCPs) have been described in Arabidopsis thaliana (UCP1 to UCP3). In plants, UCPs may act as an uncoupler or as an aspartate/glutamate exchanger. For instance, much of the data regarding UCP functionality were obtained for the UCP1 and UCP2 isoforms compared with UCP3. Here, to get a better understanding about the concerted action of UCP1 and UCP3 in planta, we investigated the transcriptome and metabolome profiles of ucp1 ucp3 double mutant plants during the vegetative phase. For that, 21-day-old mutant plants, which displayed the most evident phenotypic alterations compared to wild type (WT) plants, were employed. The double knockdown of UCP1 and UCP3, isoforms unequivocally present inside the mitochondria, promoted important transcriptional reprogramming with alterations in the expression of genes related to mitochondrial and chloroplast function as well as those responsive to abiotic stress, suggesting disturbances throughout the cell. The observed transcriptional changes were well integrated with the metabolomic data of ucp1 ucp3 plants. Alterations in metabolites related to primary and secondary metabolism, particularly enriched in the Alanine, Aspartate and Glutamate metabolism, were detected. These findings extend our knowledge of the underlying roles played by UCP3 in concert with UCP1 at the whole plant level.


Subject(s)
Arabidopsis , Adipose Tissue, Brown/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Aspartic Acid , Glutamates/metabolism , Ion Channels/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Protein Isoforms/metabolism , Uncoupling Protein 1/metabolism , Uncoupling Protein 3/metabolism
2.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36232478

ABSTRACT

The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.


Subject(s)
Mitochondrial Proteins , NAD , Animals , Mammals/metabolism , Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Uncoupling Proteins/metabolism , NAD/metabolism , Oxidoreductases/metabolism , Oxygen/metabolism , Plant Proteins/metabolism , Plants/metabolism , Stress, Physiological , Transcription Factors/metabolism
3.
BMC Plant Biol ; 14: 144, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24886177

ABSTRACT

BACKGROUND: Uncoupling protein one (UCP1) is a mitochondrial inner membrane protein capable of uncoupling the electrochemical gradient from adenosine-5'-triphosphate (ATP) synthesis, dissipating energy as heat. UCP1 plays a central role in nonshivering thermogenesis in the brown adipose tissue (BAT) of hibernating animals and small rodents. A UCP1 ortholog also occurs in plants, and aside from its role in uncoupling respiration from ATP synthesis, thereby wasting energy, it plays a beneficial role in the plant response to several abiotic stresses, possibly by decreasing the production of reactive oxygen species (ROS) and regulating cellular redox homeostasis. However, the molecular mechanisms by which UCP1 is associated with stress tolerance remain unknown. RESULTS: Here, we report that the overexpression of UCP1 increases mitochondrial biogenesis, increases the uncoupled respiration of isolated mitochondria, and decreases cellular ATP concentration. We observed that the overexpression of UCP1 alters mitochondrial bioenergetics and modulates mitochondrial-nuclear communication, inducing the upregulation of hundreds of nuclear- and mitochondrial-encoded mitochondrial proteins. Electron microscopy analysis showed that these metabolic changes were associated with alterations in mitochondrial number, area and morphology. Surprisingly, UCP1 overexpression also induces the upregulation of hundreds of stress-responsive genes, including some involved in the antioxidant defense system, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). As a consequence of the increased UCP1 activity and increased expression of oxidative stress-responsive genes, the UCP1-overexpressing plants showed reduced ROS accumulation. These beneficial metabolic effects may be responsible for the better performance of UCP1-overexpressing lines in low pH, high salt, high osmolarity, low temperature, and oxidative stress conditions. CONCLUSIONS: Overexpression of UCP1 in the mitochondrial inner membrane induced increased uncoupling respiration, decreased ROS accumulation under abiotic stresses, and diminished cellular ATP content. These events may have triggered the expression of mitochondrial and stress-responsive genes in a coordinated manner. Because these metabolic alterations did not impair plant growth and development, UCP1 overexpression can potentially be used to create crops better adapted to abiotic stress conditions.


Subject(s)
Arabidopsis/metabolism , Ion Channels/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Turnover/genetics , Nicotiana/genetics , Nicotiana/physiology , Stress, Physiological/genetics , Adenosine Triphosphate/metabolism , Cell Respiration/genetics , Gene Expression Regulation, Plant , Genes, Plant , Mitochondria/metabolism , Mitochondria/ultrastructure , Phenotype , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Signal Transduction/genetics , Transcriptome/genetics , Transgenes , Uncoupling Protein 1 , Up-Regulation/genetics
4.
Mol Plant Pathol ; 12(2): 137-50, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21199564

ABSTRACT

In plants, the ubiquitin/26S proteasome system (UPS) plays a central role in protein degradation and is involved in many steps of defence mechanisms, regardless of the types of pathogen targeted. In addition to its proteolytic activities, the UPS ribonuclease (RNase) activity, previously detected in 20S proteasome preparations from cauliflower and sunflower (Helianthus annuus), has been shown to specifically target plant viral RNAs in vitro. In this study, we show that recombinant Arabidopsis thaliana proteasomal α(5) subunit expressed in Escherichia coli harbours an RNase activity that degrades Tobacco mosaic virus (TMV, Tobamovirus)- and Lettuce mosaic virus (LMV, Potyvirus)-derived RNAs in vitro. The analysis of mutated forms of the α(5) subunit demonstrated that mutation of a glutamic acid at position 110 affects RNase activity. Furthermore, it was demonstrated, using a bimolecular fluorescence complement assay, that the multifunctional helper component proteinase (HcPro) of LMV, already known to interfere with the 20S proteasome RNase activity in vitro, can interact in vivo with the recombinant α(5) subunit. Further experiments demonstrated that, in LMV-infected lettuce cells, α(5) is partially relocalized to HcPro-containing infection-specific inclusions. Susceptibility analyses of Arabidopsis mutants, knocked out for each At-PAE gene encoding α(5) , showed that one (KO-pae1) of the two mutants exhibited a significantly increased susceptibility to LMV infection. Taken together, these results extend to A. thaliana α(5) the range of HcPro-interacting proteasomal subunits, and suggest that HcPro may modulate its associated RNase activity which may contribute to an antiviral response.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Cysteine Endopeptidases/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Subunits/metabolism , Ribonucleases/metabolism , Viral Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/virology , Arabidopsis Proteins/genetics , Escherichia coli , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Glutamic Acid/genetics , Green Fluorescent Proteins/metabolism , Lactuca , Mutation/genetics , Proteasome Endopeptidase Complex/genetics , Protein Binding , Protein Subunits/genetics , RNA, Viral/metabolism , Recombinant Proteins/metabolism , Ribonucleases/genetics , Subcellular Fractions/metabolism
5.
Genet. mol. biol ; 30(4): 1206-1208, 2007. ilus, tab
Article in English | LILACS | ID: lil-471053

ABSTRACT

The RNA interference (RNAi) technique is a recent technology that uses double-stranded RNA molecules to promote potent and specific gene silencing. The application of this technique to molecular biology has increased considerably, from gene function identification to disease treatment. However, not all small interfering RNAs (siRNAs) are equally efficient, making target selection an essential procedure. Here we present Strand Analysis (SA), a free online software tool able to identify and classify the best RNAi targets based on Gibbs free energy (deltaG). Furthermore, particular features of the software, such as the free energy landscape and deltaG gradient, may be used to shed light on RNA-induced silencing complex (RISC) activity and RNAi mechanisms, which makes the SA software a distinct and innovative tool.

6.
Annu Rev Plant Biol ; 57: 383-404, 2006.
Article in English | MEDLINE | ID: mdl-16669767

ABSTRACT

Uncoupling proteins (UCPs) are membrane proteins that mediate purine nucleotide-sensitive free fatty acid-activated H(+) flux through the inner mitochondrial membrane. After the discovery of UCP in higher plants in 1995, it was acknowledged that these proteins are widely distributed in eukaryotic organisms. The widespread presence of UCPs in eukaryotes implies that these proteins may have functions other than thermogenesis. In this review, we describe the current knowledge of plant UCPs, including their discovery, biochemical properties, distribution, gene family, gene expression profiles, regulation of gene expression, and evolutionary aspects. Expression analyses and functional studies on the plant UCPs under normal and stressful conditions suggest that UCPs regulate energy metabolism in the cellular responses to stress through regulation of the electrochemical proton potential (Deltamu(H)+) and production of reactive oxygen species.


Subject(s)
Ion Channels/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Plants/metabolism , Amino Acid Sequence , Energy Metabolism , Ion Channels/chemistry , Mitochondrial Proteins/chemistry , Molecular Sequence Data , Reactive Oxygen Species , Uncoupling Protein 1
7.
Genet. mol. biol ; 28(3,suppl): 575-581, Nov. 2005. ilus, tab
Article in English | LILACS | ID: lil-440452

ABSTRACT

Herbicides inhibit enzymatic systems of plants. Acetolactate synthase (ALS, EC = 4.1.3.18) and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, EC 2.5.1.19) are key enzymes for herbicide action. Hundreds of compounds inhibit ALS. This enzyme is highly variable, enabling the selective control of weeds in a number of crops. Glyphosate, the only commercial herbicide inhibiting EPSPS is widely used for non-selective control of weeds in many crops. Recently, transgenic crops resistant to glyphosate were developed and have been used by farmers. The aim of this study was the data mining of eucalypt expressed sequence tags (ESTs) in the FORESTs Genome Project database (https://forests.esalq.usp.br) related to these enzymes. Representative amino acid sequences from the NCBI database associated with ALS and EPSPS were blasted with ESTs from the FORESTs database using the tBLASTx option of the blast tool. The best blasting reads and clusters from FORESTs, represented as nucleotide sequences, were blasted back with the NCBI database to evaluate the level of similarity with available sequences from different species. One and seven clusters were identified as showing high similarity with EPSPS and ALS sequences from the literature, respectively. The alignment of EPSPS sequences allowed the identification of conserved regions that can be used to design specific primers for additional sequencings


Subject(s)
Expressed Sequence Tags , Eucalyptus/genetics , Acetolactate Synthase , Amino Acids/chemical synthesis , Databases, Genetic , Enzyme Inhibitors , Herbicides
8.
Genet. mol. biol ; 28(3,suppl): 555-561, Nov. 2005. ilus, tab
Article in English | LILACS | ID: lil-440454

ABSTRACT

This work was aimed at locating Eucalyptus ESTs corresponding to the GS enzyme (Glutamine Synthetase, EC = 6.3.1.2) and to the D1 protein, which are directly related to resistance to herbicides that promote oxidative stress. Glutamine Synthetase corresponds to the site of action of the herbicide glufosinate. Herbicides that belong to groups such as ureas, uracils, triazines and triazinones act on the D1-Qb complex (receptor of electrons from the Photosystem II) by inactivating it. The clusters EGEQRT3302E01.g, EGEQRT3001F12.b; EGEZLV1203B04.g; EGBGFB1211H06.g and EGEZLV1205F09.g enclosed complete sequences (with 356 amino acids) of the Glutamine Synthetase enzyme. The cluster EGEQSL1054G06.g is a consensus of four reads and enclosed a complete sequence of D1 Protein (with 353 amino acids). The comparison of the sequences of Protein D1 from different species showed that the substitutions of serine (S) by glycine (G) or serine (S) by threonine (T) at the position 264 could produce plants resistant to herbicides that act on electron flow on Photosystem II. The sequence of amino acids corresponding to the cluster EGEQSL1054G06.g had a serine in position 264 indicating sensitivity of the Eucalyptus plants to herbicides that act on this site


Subject(s)
Expressed Sequence Tags , Eucalyptus/genetics , Databases, Genetic , Glutamate-Ammonia Ligase , Herbicides , Oxidative Stress
9.
Genet. mol. biol ; 28(3,suppl): 548-554, Nov. 2005. ilus, tab
Article in English | LILACS | ID: lil-440455

ABSTRACT

This work was aimed at locating Eucalyptus ESTs corresponding to the PROTOX or PPO enzyme (Protoporphyrinogen IX oxidase, E.C. 1.3.3.4) directly related to resistance to herbicides that promote oxidative stress, changing the functionality of this enzyme. PROTOX, which is the site of action of diphenyl-ether (oxyfluorfen, lactofen, fomesafen), oxadiazole (oxadiazon and oxadiargyl), and aryl triazolinone (sulfentrazone and carfentrazone) herbicides, acts on the synthesis route of porphyrins which is associated with the production of chlorophyll a, catalases, and peroxidases. One cluster and one single read were located, with e-values better than e-70, associated to PROTOX. The alignment results between amino acid sequences indicated that this enzyme is adequately represented in the ESTs database of the FORESTs project


Subject(s)
Catalase/genetics , Eucalyptus/genetics , Herbicides , Protoporphyrinogen Oxidase , Chlorophyll , Databases, Genetic , Expressed Sequence Tags , Heme , Oxidative Stress , Peroxidase
10.
Genet. mol. biol ; 28(3,suppl): 496-500, Nov. 2005. ilus, tab, graf
Article in English | LILACS | ID: lil-440461

ABSTRACT

Post-transcriptional gene silencing (PTGS) is a conserved surveillance mechanism that identifies and cleaves double-stranded RNA molecules and their cellular cognate transcripts. The RNA silencing response is actually used as a powerful technique (named RNA interference) for potent and specific inhibition of gene expression in several organisms. To identify gene products in Eucalyptus sharing similarities with enzymes involved in the PTGS pathway, we queried the expressed sequence tag database of the Brazilian Eucalyptus Genome Sequence Project Consortium (FORESTs) with the amino acid sequences of known PTGS-related proteins. Among twenty-six prospected genes, our search detected fifteen assembled sequences encoding products presenting high level of similarity (E value < 10-40) to proteins involved in PTGS in plants and other organisms. We conclude that most of the genes known to be involved in the PTGS pathway are represented in the FORESTs database


Subject(s)
Eucalyptus/genetics , Gene Silencing , Plants/genetics , Databases, Genetic , Expressed Sequence Tags , Genetic Code , RNA Processing, Post-Transcriptional , Sequence Analysis, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...