Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(4)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38675113

ABSTRACT

Leishmaniasis is a group of parasitic diseases with the potential to infect more than 1 billion people; however, its treatment is still old and inadequate. In order to contribute to changing this view, this work consisted of the development of complexes derived from MI metal ions with thioureas, aiming to obtain potential leishmanicidal agents. The thiourea ligands (HLR) were obtained by reactions of p-toluenesulfohydrazide with R-isothiocyanates and were used in complexation reactions with AgI and AuI, leading to the formation of complexes of composition [M(HLR)2]X (M = Ag or Au; X = NO3- or Cl-). All compounds were characterized by FTIR, 1H NMR, UV-vis, emission spectroscopy and elemental analysis. Some representatives were additionally studied by ESI-MS and single-crystal XRD. Their properties were further analyzed by DFT calculations. Their cytotoxicity on Vero cells and the extracellular leishmanicidal activity on Leishmania infantum and Leishmania braziliensis cells were evaluated. Additionally, the interaction of the complexes with the Old Yellow enzyme of the L. braziliensis (LbOYE) was examined. The biological tests showed that some compounds present remarkable leishmanicidal activity, even higher than that of the standard drug Glucantime, with different selectivity for the two species of Leishmania. Finally, the interaction studies with LbOYE revealed that this enzyme could be one of their biological targets.

2.
Dalton Trans ; 52(28): 9590-9606, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37377063

ABSTRACT

We describe the synthesis, physicochemical characterization, and in vitro antitumor assays of four novel analogous ruthenium(II) complexes with general formula cis-[RuII(N-L)(P-P)2]PF6, where P-P = bis(diphenylphosphine)methane (dppm, in complexes 1 and 2) or bis(diphenylphosphine)ethane (dppe, in complexes 3 and 4) and N-L = 5,6-diphenyl-4,5-dihydro-2H-[1,2,4]triazine-3-thione (Btsc, in complexes 1 and 3) or 5,6-diphenyltriazine-3-one (Bsc, in complexes 2 and 4). The data were consistent with cis arrangement of the biphosphine ligands. For the Btsc and Bsc ligands, the data pointed to monoanionic bidentate coordination to ruthenium(II) through N,S and N,O, respectively. Single-crystal X-ray diffraction showed that complex 1 crystallized in the monoclinic system, space group P21/c. Determination of the cytotoxicity profiles of complexes 1-4 gave SI values ranging from 1.19 to 3.50 against the human lung adenocarcinoma cell line A549 and the non-tumor lung cell line MRC-5. Although the molecular docking studies suggested that the interaction between DNA and complex 4 was energetically favorable, the experimental results showed that they interacted weakly. Overall, our results demonstrated that these novel ruthenium(II) complexes have interesting in vitro antitumor potential and this study may contribute to further studies in medicinal inorganic chemistry.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Lung Neoplasms , Ruthenium , Semicarbazones , Humans , Coordination Complexes/chemistry , Ruthenium/pharmacology , Ruthenium/chemistry , Cell Line, Tumor , Ligands , Molecular Docking Simulation , Semicarbazones/pharmacology , Antineoplastic Agents/chemistry , Apoptosis , Lung Neoplasms/drug therapy , Cell Movement , Lung
3.
Dalton Trans ; 52(14): 4442-4455, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36917192

ABSTRACT

The electrocatalytic properties of Ru complexes are of great technological interest given their potential application in reactions such water splitting and CO2 reduction. In this work, a novel terpyridine-based Ru(II) complex, [RuCl(trpy)(acpy)], trpy = 2,2':6',2''-terpyridine, acpy- = 2-pyridylacetate was synthesized and its spectroscopic, electrochemical and catalytic properties were explored in detail. In dry acetonitrile, the complex exhibits two reduction peaks at -1.95 V and -2.20 V vs. Fc/Fc+, attributed to consecutive 1 e- reduction. Under CO2 atmosphere, a catalytic wave is observed (Eonset = 2.1 V vs. Fc/Fc+), with CO as the main reduction product. Bulk electrolysis reveals a turnover number (TON) of 12 (kobs = 1.5 s-1). In the presence of 1% water, an improvement in the catalytic activity is observed (TONCO = 21 and kobs = 2.0 s-1) and, additionally, formate was also detected (TONHCOO = 7). Spectroelectrochemical experiments allowed the identification of a metallocarboxylate (Ru-COO-) intermediate under anhydrous conditions, while in water, the partial labilization of the acpy- ligand was observed in the course of the catalytic cycle. The experimental data was combined with DFT calculations, allowing the proposal of a catalytic cycle. The results establish important relationships between selectivity, ligand structure and reaction conditions.

4.
Dalton Trans ; 50(42): 15248-15259, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34632989

ABSTRACT

A new ruthenium polypyridyl complex, [Ru(bpy)2(acpy)]+ (acpy = 2-pyridylacetate, bpy = 2,2'-bipyridine), was synthesized and fully characterized. Distinct from the previously reported analog, [Ru(bpy)2(pic)]+ (pic = 2-pyridylcarboxylate), the new complex is unstable under aerobic conditions and undergoes oxidation to yield the corresponding α-keto-2-pyridyl-acetate (acpyoxi) coordinated to the RuII center. The reaction is one of the few examples of C-H activation at mild conditions using O2 as the primary oxidant and can provide mechanistic insights with important implications for catalysis. Theoretical and experimental investigations of this aerobic oxidative transformation indicate that it takes place in two steps, first producing the α-hydroxo-2-pyridyl-acetate analog and then the final product. The observed rate constant for the first oxidation was in the order of 10-2 h-1. The reaction is hindered in the presence of coordinating solvents indicating the role of the metal center in the process. Theoretical calculations at the M06-L level of theory were performed for multiple reaction pathways in order to gain insights into the most probable mechanism. Our results indicate that O2 binding to [Ru(bpy)2(acpy)]+ is favored by the relative instability of the six-ring chelate formed by the acpy ligand and the resulting RuIII-OO˙- superoxo is stabilized by the carboxylate group in the coordination sphere. C-H activation by this species involves high activation free energies (ΔG‡ = 41.1 kcal mol-1), thus the formation of a diruthenium µ-peroxo intermediate, [(RuIII(bpy)2(O-acpy))2O2]2+via interaction of a second [Ru(bpy)2(acpy)]+ was examined as an alternative pathway. The dimer yields two RuIVO centers with a low ΔG‡ of 2.3 kcal mol-1. The resulting RuIVO species can activate C-H bonds in acpy (ΔG‡ = 23.1 kcal mol-1) to produce the coordinated α-hydroxo-2-pyridylacetate. Further oxidation of this intermediate leads to the α-keto-2-pyridyl-acetate product. The findings provide new insights into the mechanism of C-H activation catalyzed by transition-metal complexes using O2 as the sole oxygen source.

6.
J Inorg Biochem ; 223: 111543, 2021 10.
Article in English | MEDLINE | ID: mdl-34298306

ABSTRACT

Considering the promising previous results on the remarkable activity exhibited by cobalt(III) and manganese(II) thiosemicarbazone compounds as antibacterial agents, the present study aimed to prepare and then evaluate the antibacterial activity of two different types of Cu(II) complexes based on a 2-acetylpyridine-N(4)-methyl-thiosemicarbazone ligand (Hatc-Me), a monomer complex [CuCl(atc-Me)] and a novel dinuclear complex [{Cu(µ-atc-Me)}2µ-SO4]. The compounds were characterized by infrared spectra, ultraviolet visible and CHN elemental analysis. In addition, the crystalline structures of the complexes were determined by single-crystal X-ray diffraction. In both cases, the Schiff base ligand coordinated in a tridentate mode via the pyridine nitrogen, imine nitrogen and sulfur atoms. The two Cu(II) atoms in the dimer are five coordinate, consisting of three NNS-donor atoms from the thiosemicarbazone ligand connected by a sulfate bridge. The Hirshfeld surface and energy framework of the complexes were additionally analyzed to verify the intermolecular interactions. The biological activity of the Cu(II) salts, the free ligand and its Cu(II) complexes was evaluated against six strains of mycobacteria including Mycobacterium tuberculosis. The complexes showed promising results as antibacterial agents for M. avium and M. tuberculosis, which ranged from 6.12 to 12.73 µM. Furthermore, molecular docking analysis was performed and the binding energy of the docked compound [{Cu(µ-atc-Me)}2µ-SO4] with M. tuberculosis and M. avium strains were extremely favorable (-11.11 and - 14.03 kcal/mol, respectively). The in silico results show that the complexes are potential candidates for the development of new antimycobacterial drugs.


Subject(s)
Antitubercular Agents/pharmacology , Coordination Complexes/pharmacology , Thiosemicarbazones/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/metabolism , Antitubercular Agents/pharmacokinetics , Bacterial Proteins/metabolism , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , Coordination Complexes/pharmacokinetics , Copper/chemistry , Ligands , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Mycobacterium avium/drug effects , Mycobacterium kansasii/drug effects , Mycobacterium tuberculosis/drug effects , Protein Binding , Structure-Activity Relationship , Thermodynamics , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/metabolism , Thiosemicarbazones/pharmacokinetics
7.
Dalton Trans ; 49(45): 16368-16379, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32458940

ABSTRACT

This work describes the preparation of a new thiosemicarbazone derivative, (Z)-N-ethyl-2-(6-oxo-1,10-phenanthrolin-5(6H)-ylidene)hydrazinecarbothioamide (phet) and its respective Re(i) tricarbonyl chloro complex, fac-[ReCl(CO)3(phet)]. The spectroscopic, photophysical and electrochemical properties of the new complex were fully investigated through steady state and time-resolved techniques along with computational calculations. In fac-[ReCl(CO)3(phet)], the new ligand is coordinated to the metal center through the pyridyl rings of the phenanthroline moiety. The unbound electron pairs in the S atom of the bending thiosemicarbazone group induce new low energy lying electronic transitions. Consequently, enhanced visible light absorption up to 550 nm is observed in acetonitrile due to the overlap between MLCTRe→phet and ILphet(n→π*) transitions. The absorption bands and emission quantum yields of fac-[ReCl(CO)3(phet)] are sensitive to proton concentration due to an acid-basic equilibrium in the N atoms of the thiosemicarbazone. Proton dissociation constants of 10.0 ± 0.1 and 11.4 ± 0.2 were determined respectively for the ground and excited states of the new complex. Spectral changes could also be observed in the presence of Zn2+ cations which can be further explored for sensing applications. The electrochemical behavior of the new complex was studied in detail, revealing up to four one electron reduction processes in the range from 0 to -2.4 V vs. Fc+/Fc. With support of DFT calculations, the first three processes are ascribed to the reduction of the coordinated phet ligand followed by the ReI/0 reduction and consequent Cl- release. The new complex was able to act as an electrocatalyst for CO2 reduction into CO (Eonset = -1.92 V vs. Fc+/Fc), with a turnover frequency of 2.81 s-1 and turnover number of 24 ± 1 in anhydrous acetonitrile, being the first Re(i) tricarbonyl complex with a thiosemicarbazone derivative described for this goal. The detailed characterization carried out here can drive the development of new Re(i)-thiosemicarbazone derivatives for different applications.

8.
Dalton Trans ; 49(28): 9564-9567, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32462164

ABSTRACT

[PtCl2(phen)] reacts with thiosemicarbazones derived from ß-diketones (H2LR) leading to an intramolecular C-C coupling between phen and the ketone upon formation of tetradentate N,N,N,S chelates [PtII(LRphen)]. The reactions proceed via bidentate coordination of the doubly deprotonated (LR)2- followed by an intra-nucleophilic attack and consecutive C-C bond formation.

9.
ACS Infect Dis ; 5(10): 1698-1707, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31419384

ABSTRACT

Chagas disease remains a serious public health concern with unsatisfactory treatment outcomes due to strain-specific drug resistance and various side effects. To identify new therapeutic drugs against Trypanosoma cruzi, we evaluated both the in vitro and in vivo activity of the organometallic gold(III) complex [Au(III)(Hdamp)(L14)]Cl (L1 = SNS-donating thiosemicarbazone), henceforth denoted 4-Cl. Our results demonstrated that 4-Cl was more effective than benznidazole (Bz) in eliminating both the extracellular trypomastigote and intracellular amastigote forms of the parasite without cytotoxic effects on mammalian cells. In in vivo assays, 4-Cl in PBS solution loses the protonation and becomes the 4-neutral. 4-Neutral reduced parasitaemia and tissue parasitism in addition to protecting the liver and heart from tissue damage at 2.8 mg/kg/day. All these changes resulted in the survival of 100% of the mice treated with the gold complex during the acute phase. Analyzing the surviving animals of the acute infection, the parasite load after 150 days of infection was equivalent to those treated with the standard dose of Bz without demonstrating the hepatotoxicity of the latter. In addition, we identified a modulation of interferon gamma (IFN-γ) levels that may be targeting the disease's positive outcome. To the best of our knowledge, this is the first gold organometallic study that shows promise in an in vivo experimental model against Chagas disease.


Subject(s)
Chagas Disease/drug therapy , Gold/chemistry , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Line , Chagas Disease/pathology , Cysteine Endopeptidases , Disease Models, Animal , Drug Resistance/drug effects , Female , Heart , Humans , Interferon-gamma/metabolism , Liver/pathology , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Muscle, Skeletal/parasitology , Muscle, Skeletal/pathology , Nitroimidazoles , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Parasitemia , Protozoan Proteins , Survival Analysis
10.
Eur J Med Chem ; 180: 213-223, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31306908

ABSTRACT

Reactions of Ni(II) and Pd(II) precursors with S-benzyl-N-(ferrocenyl)methylenedithiocarbazate (HFedtc) led to the formation of heterobimetallic complexes of the type [MII(Fedtc)2] (M = Ni and Pd). The characterization of the compounds involved the determination of melting point, FTIR, UV-Vis, 1H NMR, elemental analysis and electrochemical experiments. Furthermore, the crystalline structures of HFedtc and [NiII(Fedtc)2] were determined by single crystal X-ray diffraction. The compounds were evaluated against the intracellular form of Trypanosoma cruzi (Tulahuen Lac-Z strain) and the cytotoxicity assays were assessed using LLC-MK2 cells. The results showed that the coordination of HFedtc to Ni(II) or Pd(II) decreases the in vitro trypanocidal activity while the cytotoxicity against LLC-MK2 cells does not change significantly. [PdII(Fedtc)2] showed the greater potential between the two complexes studied, showing an SI value of 8.9. However, this value is not better than that of the free ligand with an SI of 40, a similar value to that of the standard drug benznidazole (SI = 48). Additionally, molecular docking simulations were performed with Trypanosoma cruzi Old Yellow Enzyme (TcOYE), which predicted that HFedtc binds to the protein, almost parallel to the flavin mononucleotide (FMN) prosthetic group, while the [NiII(Fedtc)2] complex was docked into the enzyme binding site in a significantly different manner. In order to confirm the hypothetical interaction, in vitro experiments of fluorescence quenching and enzymatic activity were performed which indicated that, although HFedtc was not processed by the enzyme, it was able to act as a competitive inhibitor, blocking the hydride transfer from the FMN prosthetic group of the enzyme to the menadione substrate.


Subject(s)
Benzyl Compounds/pharmacology , Coordination Complexes/pharmacology , Enzyme Inhibitors/pharmacology , Hydrazines/pharmacology , Metallocenes/pharmacology , NADPH Dehydrogenase/antagonists & inhibitors , Nickel/pharmacology , Palladium/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Survival/drug effects , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Hydrazines/chemistry , Macaca mulatta , Metallocenes/chemistry , Molecular Docking Simulation , Molecular Structure , NADPH Dehydrogenase/chemistry , NADPH Dehydrogenase/metabolism , Nickel/chemistry , Nickel/metabolism , Palladium/chemistry , Palladium/metabolism , Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanocidal Agents/metabolism , Trypanosoma cruzi/metabolism
11.
Eur J Med Chem ; 141: 615-631, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29107428

ABSTRACT

New complexes of composition [MX(HL1)] (M = PtII, PdII, X = Cl- or I-) and [MX(L1)] (M = AuIII, X = Cl-; M = PtII, PdII, X = PPh3) have been synthesized using a potentially tridentate thiosemicarbazone (H2L1) containing an additional oxime binding site. Among other analytical methods, all the seven complexes have been structurally characterized by single crystal X-ray diffractometry. Interesting structural features such as the influence of the halide ligands on hydrogen bonds and the formation of supramolecular structures for the phosphine derivatives are discussed. The in vitro trypanocidal activity of the free ligand H2L1 and its derivatives against both extracellular trypomastigote and intracellular amastigote (IC50try/ama) forms of Trypanosoma cruzi (Tulahuen Lac-Z strain) and the cytotoxicity was assessed on LLC-MK2 cell line. The results showed that complexation of the thiosemicarbazone ligand H2L1 to PtII, PdII and AuIII metal centers enhances the in vitro trypanocidal activity and that the cytotoxicity is dependent on both the metal center and coligands. Within the studied series, the AuIII complex showed the greatest potential, being not the most active but the most selective compound with a similar selectivity index to that of the standard drug benznidazole. In order to get a preliminary insight into the mechanism of action of these compounds, in vitro experiments of fluorescence quenching and enzymatic activity were performed using the AuIII complex and Trypanosoma cruzi Old Yellow Enzyme (TcOYE) which indicated that the gold derivative was capable of abstracting the hydride from the prosthetic FMN group of the enzyme. Additionally, molecular docking studies followed by semiempirical simulations showed that the [AuCl(L1)] binds to the binary complex TcOYE/FMN, almost parallel to the FMN prosthetic group, in a close distance that an electron/proton transfer might occur among them.


Subject(s)
Organometallic Compounds/pharmacology , Oximes/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Dose-Response Relationship, Drug , Gold/chemistry , Gold/pharmacology , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Oximes/chemistry , Palladium/chemistry , Palladium/pharmacology , Parasitic Sensitivity Tests , Platinum/chemistry , Platinum/pharmacology , Structure-Activity Relationship , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
12.
J Inorg Biochem ; 175: 225-231, 2017 10.
Article in English | MEDLINE | ID: mdl-28783554

ABSTRACT

Leishmaniasis is a parasitic disease caused by protozoa of the genus Leishmania. The many complications presented by the current treatment - including high toxicity, high cost and parasite resistance - make the development of new therapeutic agents indispensable. The present study aims to evaluate the anti-Leishmania potential of new ruthenium(II) complexes, cis­[RuII(η2-O2CR)(dppm)2]PF6, with dppm=bis(diphenylphosphino)methane and R=4-butylbenzoate (bbato) 1, 4-(methylthio)benzoate (mtbato) 2 and 3-hydroxy-4-methoxybenzoate (hmxbato) 3, in promastigote cytotoxicity and their effect on parasite-host interaction. The cytotoxicity of complexes was analyzed by MTT assay against Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Leishmania) infantum promastigotes and the murine macrophage (RAW 264.7). The effect of complexes on parasite-host interaction was evaluated by in vitro infectivity assay performed in the presence of two different concentrations of each complex: the promastigote IC50 value and the concentration nontoxic to 90% of RAW 264.7 macrophages. Complexes 1-3 exhibited potent cytotoxic activity against all Leishmania species assayed. The IC50 values ranged from 7.52-12.59µM (complex 1); 0.70-3.28µM (complex 2) and 0.52-1.75µM (complex 3). All complexes significantly inhibited the infectivity index at both tested concentrations. The infectivity inhibitions ranged from 37 to 85%. Interestingly, the infectivity inhibitions due to complex action did not differ significantly at either of the tested concentrations, except for the complex 1 against Leishmania (Leishmania) infantum. The infectivity inhibitions resulted from reductions in both percentage of infected macrophages and number of parasites per macrophage. Taken together the results suggest remarkable leishmanicidal activity in vitro by these new ruthenium(II) complexes.


Subject(s)
Antiprotozoal Agents , Coordination Complexes , Host-Parasite Interactions/drug effects , Leishmania/physiology , Leishmaniasis/drug therapy , Ruthenium , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Macrophages/parasitology , Mice , RAW 264.7 Cells , Ruthenium/chemistry , Ruthenium/pharmacology
13.
Eur J Med Chem ; 120: 217-26, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27191616

ABSTRACT

Tridentate thiosemicarbazone ligands with an ONS donor set, H2L(R) (R = Me and Et) were prepared by reactions of 1-phenyl-1,3-butanedione with 4-R-3-thiosemicarbazides. H2L(R) reacts with Na[AuCl4]·2H2O in MeOH in a 1:1 M ratio under formation of green gold(III) complexes of composition [AuCl(L(R))]. These compounds represent the first examples of gold(III) complexes with ONS chelate-bonded thiosemicarbazones. The in vitro anti-Trypanosoma cruzi activity against both trypomastigote and amastigote forms (IC50try/ama) of CL Brener strains as well as the cytotoxicity against LLC-MK2 cells of the free ligands and complexes was evaluated. The complex [AuCl(L(Me))] was found to be more active and more selective than its precursor ligand and the standard drug benznidazole with a SItry/ama value higher than 200, being considered as a lead candidate for Chagas disease treatment. Moreover the in vitro activity against the replicative amastigote form (IC50ama) of T. cruzi was additionally investigated revealing that [AuCl(L(Me))] was also more potent than benznidazole still with a similar selectivity index. Finally, docking studies showed that free ligands and complexes interact with the same residues of the parasite protease cruzain but with different intensities, suggesting that this protease could be a possible target for the trypanocidal action of the obtained compounds.


Subject(s)
Coordination Complexes/pharmacology , Gold/chemistry , Thiosemicarbazones/pharmacology , Trypanocidal Agents/chemistry , Animals , Chagas Disease/drug therapy , Coordination Complexes/chemistry , Molecular Docking Simulation , Structure-Activity Relationship , Thiosemicarbazones/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects
14.
Curr Clin Pharmacol ; 10(1): 66-72, 2015.
Article in English | MEDLINE | ID: mdl-24433444

ABSTRACT

Tuberculosis (TB) is an infectious disease caused mainly by Mycobacterium tuberculosis (MTB) and still an important public health problem worldwide. Some factors like the emergence of multidrug resistant (MDR) and extensively drug-resistant (XDR) strains make urgent the research of new active compounds. Searching for new inorganic compounds against TB, three new dioxovanadium(V) complexes were obtained upon reaction of [VO(acac)2] with hydrazone and thiosemicarbazone ligands derived from di-2-pyridyl ketone. Spectroscopic studies and X-ray crystallography revealed asymmetrically oxo bridged binuclear complexes of the type [{VO(L(1,2))}2(µ-O)2], involving the hydrazone ligands, while a mononuclear square pyramidal complex of the type [VO2(L(3))] was formed with the thiosemicarbazone ligand. The compounds were tested against M. tuberculosis and three of them, with MICs values between 2.00 and 3.76 µM were considered promising for TB treatment. Such MIC values are comparable or better than those found for some drugs currently used in TB treatment.


Subject(s)
Anti-Bacterial Agents/pharmacology , Hydrazones/pharmacology , Mycobacterium tuberculosis/drug effects , Thiosemicarbazones/pharmacology , Vanadium/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Crystallography, X-Ray , Drug Design , Hydrazones/chemical synthesis , Hydrazones/chemistry , Ligands , Microbial Sensitivity Tests , Spectrum Analysis , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...