Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 248: 109294, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31376616

ABSTRACT

Biological ammonium removal via heterotrophic nitrification/aerobic denitrification (HN/AD) was characterized for two isolates from a wastewater treatment station (WWTS). They were identified as Pseudomonas balearica UFV3 and Gordonia amicalis UFV4. Their ability to remove ammonium via NH/DA was validated by chromatography, and the influence of different physical-chemical factors on removal was evaluated. The presence of genes involved in conventional nitrification and denitrification processes was investigated via PCR and comparative genomics. Both isolates removed 100% of the ammonium in a medium containing citrate as its carbon source with a C/N ratio of 8, 3% salt, pH 7 and 30 °C. Nitrogen balance showed that approximately 55% of the ammonium removed was lost as N2(g), and 45% was assimilated. Molecular characterization revealed the absence of genes involved in autotrophic nitrification in the genome of the two isolates and the presence of genes involved in anaerobic denitrification only in P. balearica UFV3, suggesting the involvement of other genes in the HN/AD process. This was the first report of G. amicalis and P. balearica with the capability for HN/AD.


Subject(s)
Ammonium Compounds , Aerobiosis , Denitrification , Heterotrophic Processes , Nitrification , Nitrites , Nitrogen
2.
Biotechnol Rep (Amst) ; 5: 46-54, 2015 Mar.
Article in English | MEDLINE | ID: mdl-28626682

ABSTRACT

This study assessed the effect of the carbon/nitrogen (C/N) ratio on the hydrogen production from sucrose-based synthetic wastewater in upflow fixed-bed anaerobic reactors. C/N ratios of 40, 90, 140, and 190 (g C/g N) were studied using sucrose and urea as the carbon and nitrogen sources, respectively. An optimum hydrogen yield of 3.5 mol H2 mol-1 sucrose was obtained for a C/N ratio of 137 by means of mathematical adjustment. For all C/N ratios, the sucrose removal efficiency reached values greater than 80% and was stable after the transient stage. However, biogas production was not stable at all C/N ratios as a consequence of the continuous decreasing of the specific organic loading rate (SOLR) when the biomass accumulated in the fixed-bed, causing the proliferation of H2-consuming microorganisms. It was found that the application of a constant SOLR of 6.0 g sucrose g-1 VSS d-1 stabilized the system.

SELECTION OF CITATIONS
SEARCH DETAIL
...