Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 201: 107897, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37487369

ABSTRACT

The rice breeding process for grain yield could be effectively enhanced by developing efficient tools that accelerate plant selection through the rapid determination of reliable predictors. In this study, we have described various associations between grain yield and photosynthetic parameters, which can be easily and quickly obtained using a non-invasive technique on the flag leaf during the anthesis stage. Among the analyzed photosynthetic parameters, the photosynthetic performance index (PIABS) stood out due to its strong association with grain yield. A genome-wide association analysis conducted on plants from a rice diversity panel at the tillering stage revealed the presence of a quantitative trait locus on chromosome 9. This locus was characterized by a group of candidate chloroplastic genes that exhibited contrasting haplotypes for PIABS. An analysis of these haplotypes revealed a clear division into two groups. One group consisted of haplotypes linked to high values of PIABS, which were predominantly associated with Japonica spp. subpopulations. The other group consisted of haplotypes linked to low values of PIABS, which were exclusively associated with Indica spp. subpopulations. Japonica spp. genotypes exhibited higher values in the yield component panicle weight compared with the Indica spp. genotypes. The findings of this study indicate that PIABS could serve as an early predictor of yield parameters during the tillering stage in rice breeding processes.


Subject(s)
Oryza , Oryza/genetics , Genome-Wide Association Study , Plant Breeding , Genotype , Edible Grain/genetics
2.
Plant Physiol Biochem ; 168: 457-464, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34717177

ABSTRACT

The grain protein content (GPC) in rice is low, and more efforts with agronomic and molecular approaches were performed to increase them. However, the rice research focusing on the plant physiological behaviour that modulates the phenomenon of grain protein filling is very scarce. This work contains physiological parameters related to photosynthetic activity in the flag leaf in the grain filling period and N partitioning assays of high (Nutriar) and traditional (Camba) GPC cultivars. Results indicated a higher photosynthetic capacity, a better capacity to provide CO2 to the chloroplast and a healthier PSII structure in Camba relative to Nutriar. Chlorophyll fluorescence parameters decreased more steeply over time in the high protein variety, and a strong negative correlation was observed between GPC and PSII structure parameters. N content in the flag leaf at anthesis showed lower values and higher remobilisation during the grain filling period in Nutriar compared to Camba. The results of this work suggested that the inactivation of some PSII structures in higher GPC cultivars is associated with N remobilisation and would contribute to an increase in the free N available to be translocated to the grain.


Subject(s)
Grain Proteins , Oryza , Chlorophyll , Edible Grain , Nitrogen , Photosynthesis , Plant Leaves
3.
Plant Physiol Biochem ; 166: 761-769, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34217132

ABSTRACT

Pecan plants are attacked by the fungus Phomopsis spp. that causes stem canker, a serious and emerging disease in commercial orchards. Stem canker, which has been reported in several countries, negatively affects tree canopy health, eventually leading to production losses. The purpose of this study was to inquire into the physiology of pecan plants under stem canker attack by Phomopsis spp. To this end, pecan plants were inoculated with an isolate of Phomopsis spp. and several parameters, such as polyamines, proline, sugars, starch, chlorophyll fluorescence and canopy temperature were analysed. Under artificial inoculation, a high disease incidence was observed with symptoms similar to those in plants showing stem canker under field conditions. Furthermore, the infected stem showed dead tissue with brown necrotic discolouration in the xylem tissue. The free polyamines putrescine, spermidine, and spermine were detected and their levels decreased as leaves aged in the infected plants with respect to the controls. Chlorophyll fluorescence parameters, such as Sm, ψEO, and QbRC decreased under plant infection and therefore the K-band increased. Canopy temperature and proline content increased in the infected plants with respect to the controls while sugar content decreased. These data suggest that stem canker caused by Phomopsis spp. induces physiological changes that are similar to those observed in plants under drought stress. To our knowledge, this is the first study that documents the physiological and biochemical effects derived from pecan-Phomopsis interaction.


Subject(s)
Carya , Polyamines , Chlorophyll , Fluorescence , Phomopsis , Plant Leaves
4.
Plant Sci ; 296: 110488, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32540008

ABSTRACT

The results of the present work suggested a relationship between the growth stability and functional/structural parameters associated to the primary photochemistry and oxygen evolving complex (OEC) in tolerant rice plants under suboptimal low temperatures (SLT) stress. This was concluded from the absence of changes in net photosynthetic rate and in fraction of reaction centers to reduce quinone A, and very small changes in P680 efficiency to trap and donate electrons to quinone A and in fraction of active OEC in tolerant plants under cold stress but not in sensitive plants. The SLT stress also induced OEC activity limitations in both genotypes, but in a greater extent in sensitive plants. However, an assay using an artificial electron donor to replace OEC indicated that the P680+ capacity to accept electrons was not altered in both genotypes under SLT stress from the beginning of the stress treatment, suggesting that the OEC structure stability is related to rice SLT tolerance to sustain the photosynthesis. This hypothesis was also supported by the fact that tolerant plants but not sensitive plants did not alter the gene expression and protein content of PsbP under SLT stress, an OEC subunit with a role in stabilizing of OEC structure.


Subject(s)
Oryza/physiology , Photosystem II Protein Complex/physiology , Cold-Shock Response , Fluorescence , Oryza/growth & development , Oryza/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Real-Time Polymerase Chain Reaction , Thylakoids/metabolism , Transcriptome
5.
J Exp Bot ; 71(3): 1053-1066, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31624838

ABSTRACT

We analysed the cellular and molecular changes in the leaf growth zone of tolerant and sensitive rice varieties in response to suboptimal temperatures. Cold reduced the final leaf length by 35% and 51% in tolerant and sensitive varieties, respectively. Tolerant lines exhibited a smaller reduction of the leaf elongation rate and greater compensation by an increased duration of leaf growth. Kinematic analysis showed that cold reduced cell production in the meristem and the expansion rate in the elongation zone, but the latter was compensated for by a doubling of the duration of cell expansion. We performed iTRAQ proteome analysis on proliferating and expanding parts of the leaf growth zone. We identified 559 and 542 proteins, of which 163 and 210 were differentially expressed between zones, and 96 and 68 between treatments, in the tolerant and sensitive lines, respectively. The categories protein biosynthesis and redox homeostasis were significantly overrepresented in the up-regulated proteins. We therefore measured redox metabolites and enzyme activities in the leaf growth zone, demonstrating that tolerance of rice lines to suboptimal temperatures correlates with the ability to up-regulate enzymatic antioxidants in the meristem and non-enzymatic antioxidants in the elongation zone.


Subject(s)
Acclimatization , Antioxidants/metabolism , Oryza/physiology , Plant Leaves/metabolism , Cold Temperature , Homeostasis , Oxidation-Reduction , Plant Leaves/growth & development , Proteome
6.
Front Plant Sci ; 10: 1415, 2019.
Article in English | MEDLINE | ID: mdl-31749821

ABSTRACT

Polyamines (PAs) are natural aliphatic amines involved in many physiological processes in almost all living organisms, including responses to abiotic stresses and microbial interactions. On other hand, the family Leguminosae constitutes an economically and ecologically key botanical group for humans, being also regarded as the most important protein source for livestock. This review presents the profuse evidence that relates changes in PAs levels during responses to biotic and abiotic stresses in model and cultivable species within Leguminosae and examines the unreviewed information regarding their potential roles in the functioning of symbiotic interactions with nitrogen-fixing bacteria and arbuscular mycorrhizae in this family. As linking plant physiological behavior with "big data" available in "omics" is an essential step to improve our understanding of legumes responses to global change, we also examined integrative MultiOmics approaches available to decrypt the interface legumes-PAs-abiotic and biotic stress interactions. These approaches are expected to accelerate the identification of stress tolerant phenotypes and the design of new biotechnological strategies to increase their yield and adaptation to marginal environments, making better use of available plant genetic resources.

7.
Plant Physiol Biochem ; 144: 100-109, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31561198

ABSTRACT

The interactions established between plants and endophytic fungi span a continuum from beneficial to pathogenic associations. The aim of this work was to isolate potentially beneficial fungal endophytes in the legume Lotus tenuis and explore the mechanisms underlying their effects. One of the nine fungal strains isolated was identified as Fusarium solani and shows the highest phosphate-solubilisation activity, and also grows endophytically in roots of L. japonicus and L. tenuis. Interestingly, fungal invasion enhances plant growth in L. japonicus but provokes a contrasting effect in L. tenuis. These differences were also evidenced when the rate of photosynthesis as well as sugars and K contents were assessed. Our results indicate that the differential responses observed are due to distinct mechanisms deployed during the establishment of the interactions that involve the regulation of photosynthesis, potassium homeostasis, and carbohydrate metabolism. These responses are employed by these plant species to maintain fitness during the endophytic interaction.


Subject(s)
Endophytes/pathogenicity , Fusarium/pathogenicity , Lotus/metabolism , Lotus/microbiology , Plant Roots/metabolism , Plant Roots/microbiology
8.
J Plant Physiol ; 231: 281-290, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30342327

ABSTRACT

The polyamines putrescine, spermidine and spermine participate in a variety of cellular processes in all organisms. Many studies have shown that these polycations are important for plant immunity, as well as for the virulence of diverse fungal phytopathogens. However, the polyamines' roles in the pathogenesis of phytopathogenic bacteria have not been thoroughly elucidated to date. To obtain more information on this topic, we assessed the changes in polyamine homeostasis during the infection of tomato plants by Pseudomonas syringae. Our results showed that polyamine biosynthesis and catabolism are activated in both tomato and bacteria during the pathogenic interaction. This activation results in the accumulation of putrescine in whole leaf tissues, as well as in the apoplastic fluids, which is explained by the induction of its synthesis in plant cells and also on the basis of its excretion by bacteria. We showed that the excretion of this polyamine by P. syringae is stimulated under virulence-inducing conditions, suggesting that it plays a role in plant colonization. However, no activation of bacterial virulence traits or induction of plant invasion was observed after the exogenous addition of putrescine. In addition, no connection was found between this polyamine and plant defence responses. Although further research is warranted to unravel the biological functions of these molecules during plant-bacterial interactions, this study contributes to a better understanding of the changes associated with the homeostasis of polyamines during plant pathogenesis.


Subject(s)
Plant Diseases/microbiology , Pseudomonas syringae/metabolism , Putrescine/metabolism , Solanum lycopersicum/microbiology , Spermidine/metabolism , Spermine/metabolism , Chlorophyll A/metabolism , Gene Expression Profiling , Host-Pathogen Interactions , Solanum lycopersicum/metabolism , Plant Immunity , Plant Leaves/metabolism
9.
Plant Physiol Biochem ; 127: 537-552, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29723825

ABSTRACT

The purpose of this research was to identify differences between two contrasting rice cultivars in their response to suboptimal low temperatures stress. A transcriptomic analysis of the seedlings was performed and results were complemented with biochemical and physiological analyses. The microarray analysis showed downregulation of many genes related with PSII and particularly with the oxygen evolving complex in the sensitive cultivar IR50. Complementary studies indicated that the PSII performance, the degree of oxygen evolving complex coupling with the PSII core and net photosynthetic rate diminished in this cultivar in response to the stress. However, the tolerant cultivar Koshihikari was able to maintain its energy equilibrium by sustaining the photosynthetic capacity. The increase of oleic acid in Koshihikari could be related with membrane remodelling of the chloroplasts and hence contribute to tolerance. Overall, these results work as a ground for future analyses that look forward to characterize possible mechanisms to tolerate this stress.


Subject(s)
Acclimatization/physiology , Chloroplasts/metabolism , Cold Temperature , Oryza/metabolism , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism
10.
J Plant Physiol ; 206: 40-48, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27688092

ABSTRACT

The response of fifty-four Lotus japonicus ecotypes, and of six selected ecotypes was investigated under alkaline conditions. Sensitive, but not tolerant ecotypes, showed interveinal chlorosis under all alkalinity conditions and high mortality under extreme alkalinity. Interveinal chlorosis was associated with Fe deficiency, as a reduced Fe2+ shoot content was observed in all sensitive ecotypes. In addition, some showed a decline in photosynthesis rate and PSII performance compared to the control. In contrast, some tolerant ecotypes did not change these parameters between treatments. Alkaline tolerance could be explained by a mechanism of Fe acquisition and a root structural modification. This conclusion was based on the fact that all tolerant, but not the sensitive ecotypes, presented high ferric reductase oxidase activity under alkaline stress compared to the control, and a Herringbone root pattern modification. On this basis, the analysis of these mechanisms of alkaline tolerance could be used in screening programs for the selection of new tolerant genotypes in the Lotus genus.


Subject(s)
Adaptation, Physiological/drug effects , Alkalies/pharmacology , Iron/metabolism , Lotus/physiology , Plant Roots/anatomy & histology , Plant Roots/physiology , Chlorophyll/metabolism , Ecotype , FMN Reductase/metabolism , Fluorescence , Lotus/drug effects , Photosynthesis/drug effects , Photosystem II Protein Complex/metabolism , Plant Diseases , Plant Roots/drug effects , Plant Roots/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Stress, Physiological/drug effects
11.
Plant Sci ; 250: 59-68, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27457984

ABSTRACT

Lotus species are important forage legumes due to their high nutritional value and adaptability to marginal conditions. However, the dry matter production and regrowth rate of cultivable Lotus spp. is drastically reduced during colder seasons. In this work, we evaluated the chilling response of Lotus japonicus ecotypes MG-1 and MG-20. No significant increases were observed in reactive oxygen species and nitric oxide production or in lipid peroxidation, although a chilling-induced redox imbalance was suggested through NADPH/NADP(+) ratio alterations. Antioxidant enzyme catalase, ascorbate peroxidase, and superoxide dismutase activities were also measured. Superoxide dismutase, in particular the chloroplastic isoform, showed different activity for different ecotypes and treatments. Stress-induced photoinhibition also differentially influenced both ecotypes, with MG-1 more affected than MG-20. Data showed that the D2 PSII subunit was more affected than D1 after 1 d of low temperature exposure, although its protein levels recovered over the course of the experiment. Interestingly, D2 recovery was accompanied by improvements in photosynthetic parameters (Asat and Fv/Fm) and the NADPH/NADP(+) ratio. Our results suggest that the D2 protein is involved in the acclimation response of L. japonicus to low temperature. This may provide a deeper insight into the chilling tolerance mechanisms of the Lotus genus.


Subject(s)
Ecotype , Lotus/genetics , Lotus/metabolism , Photosynthesis , Adaptation, Biological , Antioxidants/metabolism , Cold Temperature , Lotus/enzymology , Oxidative Stress , Reactive Oxygen Species/metabolism
12.
J Plant Physiol ; 168(11): 1234-40, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21324548

ABSTRACT

The possible relationship between polyamine catabolism mediated by copper-containing amine oxidase and the elongation of soybean hypocotyls from plants exposed to NaCl has been studied. Salt treatment reduced values of all hypocotyl growth parameters. In vitro, copper-containing amine oxidase activity was up to 77-fold higher than that of polyamine oxidase. This enzyme preferred cadaverine over putrescine and it was active even under the saline condition. On the other hand, saline stress increased spermine and cadaverine levels, and the in vivo copper-containing amine oxidase activity in the elongation zone of hypocotyls. The last effect was negatively modulated by the addition of the copper-containing amine oxidase inhibitor N,N'-diaminoguanidine. In turn, plants treated with the inhibitor showed a significant reduction of reactive oxygen species in the elongation zone, even in the saline situation. In addition, plants grown in cadaverine-amended culture medium showed increased hypocotyl length either in saline or control conditions and this effect was also abolished by N,N'-diaminoguanidine. Taken together, our results suggest that the activity of the copper-containing amine oxidase may be partially contributing to hypocotyl growth under saline stress, through the production of hydrogen peroxide by polyamine catabolism and reinforce the importance of polyamine catabolism and hydrogen peroxide production in the induction of salt tolerance in plants.


Subject(s)
Amine Oxidase (Copper-Containing)/metabolism , Glycine max/metabolism , Hypocotyl/growth & development , Polyamines/metabolism , Salts/metabolism , Stress, Physiological , Gene Expression , Guanidines/pharmacology , Hydrogen Peroxide/metabolism , Hypocotyl/drug effects , Hypocotyl/metabolism , Potassium/analysis , Reactive Oxygen Species/metabolism , Salinity , Salt-Tolerant Plants/metabolism , Sodium/analysis , Glycine max/drug effects , Glycine max/enzymology , Glycine max/growth & development
13.
J Exp Bot ; 60(15): 4249-62, 2009.
Article in English | MEDLINE | ID: mdl-19717530

ABSTRACT

The possible involvement of apoplastic reactive oxygen species produced by the oxidation of free polyamines in the leaf growth of salinized maize has been studied here. Salt treatment increased the apoplastic spermine and spermidine levels, mainly in the leaf blade elongation zone. The total activity of polyamine oxidase was up to 20-fold higher than that of the copper-containing amine oxidase. Measurements of H(2)O(2), *O(2)(-), and HO* production in the presence or absence of the polyamine oxidase inhibitors 1,19-bis-(ethylamine)-5,10,15 triazanonadecane and 1,8-diamino-octane suggest that, in salinized plants, the oxidation of free apoplastic polyamines by polyamine oxidase by would be the main source of reactive oxygen species in the elongation zone of maize leaf blades. This effect is probably due to increased substrate availability. Incubation with 200 microM spermine doubled segment elongation, whereas the addition of 1,19-bis-(ethylamine)-5,10,15 triazanonadecane and 1,8-diamino-octane to 200 microM spermine attenuated and reversed the last effect, respectively. Similarly, the addition of MnCl(2) (an *O(2)(-) dismutating agent) or the HO* scavenger sodium benzoate along with spermine, annulled the elongating effect of the polyamine on the salinized segments. As a whole, the results obtained here demonstrated that, under salinity, polyamine oxidase activity provides a significant production of reactive oxygen species in the apoplast which contributes to 25-30% of the maize leaf blade elongation.


Subject(s)
Oxidoreductases Acting on CH-NH Group Donors/metabolism , Plant Leaves/growth & development , Plant Proteins/metabolism , Sodium Chloride/metabolism , Zea mays/enzymology , Plant Leaves/enzymology , Plant Leaves/physiology , Stress, Physiological , Zea mays/growth & development , Zea mays/physiology , Polyamine Oxidase
14.
Plant Physiol ; 147(4): 2164-78, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18583531

ABSTRACT

The role of polyamine (PA) metabolism in tobacco (Nicotiana tabacum) defense against pathogens with contrasting pathogenic strategies was evaluated. Infection by the necrotrophic fungus Sclerotinia sclerotiorum resulted in increased arginine decarboxylase expression and activity in host tissues, as well as putrescine and spermine accumulation in leaf apoplast. Enhancement of leaf PA levels, either by using transgenic plants or infiltration with exogenous PAs, led to increased necrosis due to infection by S. sclerotiorum. Specific inhibition of diamine and PA oxidases attenuated the PA-induced enhancement of leaf necrosis during fungal infection. When tobacco responses to infection by the biotrophic bacterium Pseudomonas viridiflava were investigated, an increase of apoplastic spermine levels was detected. Enhancement of host PA levels by the above-described experimental approaches strongly decreased in planta bacterial growth, an effect that was blocked by a PA oxidase inhibitor. It can be concluded that accumulation and further oxidation of free PAs in the leaf apoplast of tobacco plants occurs in a similar, although not identical way during tobacco defense against infection by microorganisms with contrasting pathogenesis strategies. This response affects the pathogen's ability to colonize host tissues and results are detrimental for plant defense against necrotrophic pathogens that feed on necrotic tissue; on the contrary, this response plays a beneficial role in defense against biotrophic pathogens that depend on living tissue for successful host colonization. Thus, apoplastic PAs play important roles in plant-pathogen interactions, and modulation of host PA levels, particularly in the leaf apoplast, may lead to significant changes in host susceptibility to different kinds of pathogens.


Subject(s)
Ascomycota/physiology , Nicotiana/microbiology , Plant Proteins/metabolism , Polyamines/metabolism , Pseudomonas/physiology , Amine Oxidase (Copper-Containing)/antagonists & inhibitors , Carboxy-Lyases/metabolism , Gene Expression Regulation, Plant , Necrosis/microbiology , Oxidation-Reduction , Oxidoreductases Acting on CH-NH Group Donors/antagonists & inhibitors , Plant Extracts/chemistry , Plant Leaves/metabolism , Plant Leaves/microbiology , Putrescine/metabolism , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Spermine/metabolism , Nicotiana/cytology , Nicotiana/metabolism , Polyamine Oxidase
SELECTION OF CITATIONS
SEARCH DETAIL
...