Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 254: 117764, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32407841

ABSTRACT

AIMS: Emerging evidence suggests that during gestation the in utero environment programs metabolism and can increase risk of obesity in adult offspring. Our aim was to study how alterations in maternal diets during gestation might alter body weight evolution, circulating leptin levels and caloric intake in offspring, leading to changes in body composition. MATERIALS AND METHODS: We fed gestating rats either a control diet (CD), high fat diet (HFD) or an isocaloric low protein diet (LPD), and examined the repercussions in offspring fed similar diets post-weaning on birth weight, body weight evolution, body composition, insulin sensitivity, glucose tolerance and in the relationship between plasma leptin concentration and caloric intake in offspring during growth and development. KEY FINDS: Offspring from dams fed LPD maintained reduced body weight with greater % lean mass and consumed fewer calories despite having leptin levels similar to controls. On the other hand, offspring from dams fed a HFD were insulin resistant and maintained increased body weight and % fat mass, while consuming more calories than controls despite elevated leptin concentrations. Therefore the uterine environment, modulated primarily through maternal nutrition, modified the relationship between circulating leptin levels, body fat, and caloric intake in the offspring, and dams fed a HFD produced offspring with excess adiposity, insulin resistance, and leptin resistance into adulthood. SIGNIFICANCE: Our data indicates that in utero environmental factors affected by maternal diet program alterations in the set point around which leptin regulates body weight in offspring into adulthood contributing to obesity.


Subject(s)
Maternal Nutritional Physiological Phenomena/physiology , Obesity/etiology , Prenatal Nutritional Physiological Phenomena/physiology , Adipose Tissue/metabolism , Adiposity/physiology , Animals , Animals, Newborn , Birth Weight , Body Composition , Body Weight , Diet, High-Fat , Dietary Fats , Energy Intake , Female , Insulin Resistance , Lactation , Leptin/metabolism , Male , Obesity/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats , Rats, Sprague-Dawley , Weaning
2.
Endocrine ; 31(1): 5-17, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17709892

ABSTRACT

To study the insulin effects on gene expression in skeletal muscle, muscle biopsies were obtained from 20 insulin sensitive individuals before and after euglycemic hyperinsulinemic clamps. Using microarray analysis, we identified 779 insulin-responsive genes. Particularly noteworthy were effects on 70 transcription factors, and an extensive influence on genes involved in both protein synthesis and degradation. The genetic program in skeletal muscle also included effects on signal transduction, vesicular traffic and cytoskeletal function, and fuel metabolic pathways. Unexpected observations were the pervasive effects of insulin on genes involved in interacting pathways for polyamine and S-adenoslymethionine metabolism and genes involved in muscle development. We further confirmed that four insulin-responsive genes, RRAD, IGFBP5, INSIG1, and NGFI-B (NR4A1), were significantly up-regulated by insulin in cultured L6 skeletal muscle cells. Interestingly, insulin caused an accumulation of NGFI-B (NR4A1) protein in the nucleus where it functions as a transcription factor, without translocation to the cytoplasm to promote apoptosis. The role of NGFI-B (NR4A1) as a new potential mediator of insulin action highlights the need for greater understanding of nuclear transcription factors in insulin action.


Subject(s)
Gene Expression Regulation/physiology , Hyperinsulinism/metabolism , Insulin/physiology , Muscle, Skeletal/metabolism , Adult , Cells, Cultured , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Female , Gene Expression Profiling , Glucose Clamp Technique , Humans , Male , Metabolic Networks and Pathways/genetics , Middle Aged , Nuclear Receptor Subfamily 4, Group A, Member 1 , Oligonucleotide Array Sequence Analysis , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/physiology , Receptors, Steroid/metabolism , Receptors, Steroid/physiology , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/physiology
3.
Neuropsychopharmacology ; 32(4): 765-72, 2007 Apr.
Article in English | MEDLINE | ID: mdl-16823387

ABSTRACT

Treatment with second-generation antipsychotics (SGAs) has been associated with weight gain and the development of diabetes mellitus, although the mechanisms are unknown. We tested the hypothesis that SGAs exert direct cellular effects on insulin action and substrate metabolism in adipocytes. We utilized two cultured cell models including 3T3-L1 adipocytes and primary cultured rat adipocytes, and tested for effects of SGAs risperidone (RISP), clozapine (CLZ), olanzapine (OLZ), and quetiapine (QUE), together with conventional antipsychotic drugs butyrophenone (BUTY), and trifluoperazine (TFP), over a wide concentration range from 1 to 500 microM. The effects of antipsychotic drugs on basal and insulin-stimulated rates of glucose transport were studied at 3 h, 15 h, and 3 days. Both CLZ and OLZ (but not RISP) at doses as low as 5 microM were able to significantly decrease the maximal insulin-stimulated glucose transport rate by approximately 40% in 3T3-L1 cells, whereas CLZ and RISP reduced insulin-stimulated glucose transport rates in primary cultured rat adipocytes by approximately 50-70%. Conventional drugs (BUTY and TFP) did not affect glucose transport rates. Regarding intracellular glucose metabolism, both SGAs (OLZ, QUE, RISP) and conventional drugs (BUTY and TFP) increased basal and/or insulin-stimulated glucose oxidation rates, whereas rates of lipogenesis were increased by CLZ, OLZ, QUE, and BUTY. Finally, rates of lipolysis in response to isoproterenol were reduced by the SGAs (CLZ, OLZ, QUE, RISP), but not by BUTY or TFP. These experiments demonstrate that antipsychotic drugs can differentially affect insulin action and metabolism through direct cellular effects in adipocytes. However, only SGAs were able to impair the insulin-responsive glucose transport system and to impair lipolysis in adipocytes. Thus, SGAs directly induce insulin resistance and alter lipogenesis and lipolysis in favor of progressive lipid accumulation and adipocyte enlargement. These effects of SGAs on adipocytes could explain, in part, the association of SGAs with weight gain and diabetes.


Subject(s)
Adipocytes/drug effects , Antipsychotic Agents/pharmacology , Glucose/metabolism , Insulin/metabolism , Lipogenesis/drug effects , Lipolysis/drug effects , Analysis of Variance , Animals , Biological Transport/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Male , Rats , Rats, Wistar
4.
Blood Cells Mol Dis ; 32(1): 182-90, 2004.
Article in English | MEDLINE | ID: mdl-14757434

ABSTRACT

Cellular glucose uptake is mediated by a family of facilitative glucose transporters (GLUT) exhibiting differences in kinetics, substrate specificity, and tissue-specific expression. GLUT isoform expression has not been comprehensively studied in human leukocytes, which participate in immune and inflammatory responses and are critical for host defense. Therefore, we studied the regulated expression of GLUT 1-5 mRNA and protein in isolated human lymphocytes and monocytes and in human THP-1 macrophages and foam cells. Lymphocytes expressed GLUT 1 and GLUT 3 proteins, and cellular levels of both isoforms were augmented 3.5- to 6-fold following activation by phytohemagglutinin (PHA). Monocytes expressed 8.4-fold more GLUT 3 protein and 88% less GLUT 1 than lymphocytes, and activation by lipopolysaccharide (LPS) led to a 1.9-fold increase in GLUT 1. At the level of mRNA expression, GLUT 3 mRNA was the most prevalent GLUT mRNA species in monocytes, while lymphocytes expressed equal numbers of GLUT 1 and GLUT 3 transcripts. Differentiation of THP-1 monocytes into macrophages was associated with marked induction of GLUT 3 and GLUT 5 protein expression, and high levels of GLUT 1, GLUT 3, and GLUT 5 were maintained after transformation to foam cells. GLUT 5 mRNA was expressed in 2-fold greater abundance in macrophages and foam cells than that observed for GLUT 1 mRNA, while the level of GLUT 3 mRNA was intermediate. This facilitative glucose transporters are differentially expressed and regulated in human leukocytes in a pattern that could facilitate cellular functions. Speculatively, high GLUT 1 and GLUT 3 expression could provide cellular fuel for the immune response, and high levels of high-affinity GLUT 3 in macrophages might allow the cell to compete with pathogens for hexoses, even in the presence of low interstitial glucose concentrations. Ample expression of GLUT 1 and GLUT 3 in foam cells could also provide hexose substrates and promote lipid loading. The role for high levels of the fructose transporter GLUT 5 in macrophages and foam cells is unknown since interstitial and circulating fructose concentrations are low in these cells.


Subject(s)
Gene Expression Regulation , Immune System/cytology , Monosaccharide Transport Proteins/biosynthesis , Monosaccharide Transport Proteins/physiology , Nerve Tissue Proteins , Cell Differentiation/genetics , Foam Cells/cytology , Glucose Transporter Type 1 , Glucose Transporter Type 3 , Glucose Transporter Type 5 , Humans , Immunity , Lymphocyte Activation/genetics , Lymphocytes/metabolism , Macrophages/metabolism , Monocytes/metabolism , Monosaccharide Transport Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...