Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Int J Mol Sci ; 24(15)2023 07 28.
Article in English | MEDLINE | ID: mdl-37569505

ABSTRACT

Inflammatory bowel diseases (IBDs) represent chronic idiopathic disorders, including Crohn's disease (CD) and ulcerative colitis (UC), in which one of the trigger factors is represented by aberrant immune interactions between the intestinal epithelium and the intestinal microbiota. The involvement of heat shock proteins (HSPs) as etiological and pathogenetic factors is becoming of increasing interest. HSPs were found to be differentially expressed in the intestinal tissues and sera of patients with CD and UC. It has been shown that HSPs can play a dual role in the disease, depending on the stage of progression. They can support the inflammatory and fibrosis process, but they can also act as protective factors during disease progression or before the onset of one of the worst complications of IBD, colorectal cancer. Furthermore, HSPs are able to mediate the interaction between the intestinal microbiota and intestinal epithelial cells. In this work, we discuss the involvement of HSPs in IBD considering their genetic, epigenetic, immune and molecular roles, referring to the most recent works present in the literature. With our review, we want to shed light on the importance of further exploring the role of HSPs, or even better, the role of the molecular chaperone system (CS), in IBD: various molecules of the CS including HSPs may have diagnostic, prognostic and therapeutic potential, promoting the creation of new drugs that could overcome the side-effects of the therapies currently used.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Humans , Heat-Shock Proteins/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Colitis, Ulcerative/drug therapy , Intestines
2.
Biomaterials ; 34(18): 4395-403, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23507086

ABSTRACT

In view of the broad potential biomedical applications of carbon nanotubes (CNTs) different studies were performed to assess their effect on the immune system. However, the work performed to date was able to give a restricted view looking only at some activation markers and cytokine expression. The immune system is rarely limited to few molecule interactions being instead always a balance of switching several genes on and off. Whole genome expression (microarray) is a technology able to give the full picture on genome expression. Here we describe a microarray genome-wide study on Jurkat cells, a T lymphocyte cell line, and THP1, a monocytic cell line, representative of both types of immune response, the adaptive and innate, respectively. Since any structure or molecule modification may lead to very different immune reactions, we treated the two cell lines with four types of functionalized multi-walled CNTs that differ in terms of functionalization and diameter. After having assessed the internalization and the lack of toxicity of CNTs in both cell types, we used the Affymetrix technology to analyze the expression of about 32,000 transcripts. Three of the tested nanotubes (i.e., ox-MWCNT-1, ox-MWCNT-NH3(+)-1, and ox-MWCNT-NH3(+)-2) activated immune-related pathways in monocytes but not in T cells. In view of these charateristics they were named as monocyte activating CNTs (MA-CNTs). Molecular pathways upregulated by MA-CNTs included IL6, CD40, dendritic cell maturation, tumor necrosis factor-(TNF)-α/TNFR1-2, NFKB signaling and T helper 1 chemokine pathways (CXCR3 and CCR5 ligand pathways). These pathways are commonly activated during acute inflammatory processes as those associated with immune-mediated tumor rejection and pathogen clearance. One of them (i.e., ox-MWCNT-2) downregulated genes associated with ribosomal proteins in both monocytes and T cells. We validated our findings at gene expression level by performing real-time PCR assessing the most highly modulated genes in monocytes. To confirm the results at protein level, the secretion of IL1ß, TNFα, IL6 and IL10 by THP1 and primary monocytes was assessed by ELISA, corroborating gene-expression data. Our results provide new insights into the whole gene expression modulation by different CNTs on immune cells. Considering the well known drug carrier ability of CNTs, our findings demonstrate that MA-CNTs here behave as cell specific immunostimulatory systems, giving very interesting future perspectives for their application also as immunotherapeutic agents and/or vaccine adjuvants.


Subject(s)
Immunologic Factors/immunology , Nanotubes, Carbon/chemistry , Adult , Cytokines/immunology , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation , Humans , Immunologic Factors/metabolism , Jurkat Cells , Male , Middle Aged , Monocytes/immunology , Monocytes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
3.
Ig Sanita Pubbl ; 69(6): 611-8, 2013.
Article in Italian | MEDLINE | ID: mdl-24548902

ABSTRACT

The aim of this study was to evaluate the antimicrobial activity of three absorbable, sterile, regenerated oxidized cellulose gauzes against ATCC and clinical isolates of bacterial and fungal strains, in particular those most frequently involved in surgical site infections. The three cellulose devices showed rapid antimicrobial activity against the microbial species tested. Their use could be a valuable adjunct to antibiotic prophylaxis in the prevention of surgical site infections.


Subject(s)
Anti-Infective Agents/pharmacology , Cellulose, Oxidized/pharmacology , Hemostatics/pharmacology , Surgical Wound Infection/prevention & control , Bacteria/drug effects , Candida albicans/drug effects , Humans , Microbial Sensitivity Tests , Operating Rooms
SELECTION OF CITATIONS
SEARCH DETAIL
...