Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Gene Ther ; 24(3): 245-58, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23360514

ABSTRACT

Since HIV requires CD4 and a co-receptor, most commonly C-C chemokine receptor 5 (CCR5), for cellular entry, targeting CCR5 expression is an attractive approach for therapy of HIV infection. Treatment of CD4(+) T cells with zinc-finger protein nucleases (ZFNs) specifically disrupting chemokine receptor CCR5 coding sequences induces resistance to HIV infection in vitro and in vivo. A chimeric Ad5/F35 adenoviral vector encoding CCR5-ZFNs permitted efficient delivery and transient expression following anti-CD3/anti-CD28 costimulation of T lymphocytes. We present data showing CD3/CD28 costimulation substantially improved transduction efficiency over reported methods for Ad5/F35 transduction of T lymphocytes. Modifications to the laboratory scale process, incorporating clinically compatible reagents and methods, resulted in a robust ex vivo manufacturing process capable of generating >10(10) CCR5 gene-edited CD4+ T cells from healthy and HIV+ donors. CD4+ T-cell phenotype, cytokine production, and repertoire were comparable between ZFN-modified and control cells. Following consultation with regulatory authorities, we conducted in vivo toxicity studies that showed no detectable ZFN-specific toxicity or T-cell transformation. Based on these findings, we initiated a clinical trial testing the safety and feasibility of CCR5 gene-edited CD4+ T-cell transfer in study subjects with HIV-1 infection.


Subject(s)
DNA Restriction Enzymes/genetics , Genetic Vectors/standards , HIV Infections/genetics , HIV Infections/immunology , Receptors, CCR5/genetics , Zinc Fingers/genetics , Adenoviruses, Human/genetics , Adoptive Transfer , Animals , CD28 Antigens/immunology , CD3 Complex/immunology , DNA Restriction Enzymes/metabolism , Female , Genetic Vectors/administration & dosage , Genetic Vectors/adverse effects , Genetic Vectors/genetics , HIV Infections/therapy , Humans , Lymphocyte Activation/immunology , Male , Mice , Phenotype , Receptors, CCR5/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transduction, Genetic/methods , Transduction, Genetic/standards , Transplantation, Heterologous
2.
J Transl Med ; 9: 198, 2011 Nov 14.
Article in English | MEDLINE | ID: mdl-22082029

ABSTRACT

BACKGROUND: Dendritic cells (DCs) are the most potent antigen-presenting cell population for activating tumor-specific T cells. Due to the wide range of methods for generating DCs, there is no common protocol or defined set of criteria to validate the immunogenicity and function of DC vaccines. METHODS: Monocyte-derived DCs were generated during 4 days of culture with recombinant granulocyte-macrophage colony stimulating factor and interleukin-4, and pulsed with tumor lysate produced by hypochlorous acid oxidation of tumor cells. Different culture parameters for clinical-scale DC preparation were investigated, including: 1) culture media; 2) culture surface; 3) duration of activating DCs with lipopolysaccharide (LPS) and interferon (IFN)-gamma; 4) method of DC harvest; and 5) cryomedia and final DC product formulation. RESULTS: DCs cultured in CellGenix DC media containing 2% human AB serum expressed higher levels of maturation markers following lysate-loading and maturation compared to culturing with serum-free CellGenix DC media or AIM-V media, or 2% AB serum supplemented AIM-V media. Nunclon™Δ surface, but not Corning(®) tissue-culture treated surface and Corning(®) ultra-low attachment surface, were suitable for generating an optimal DC phenotype. Recombinant trypsin resulted in reduced major histocompatibility complex (MHC) Class I and II expression on mature lysate-loaded DCs, however presentation of MHC Class I peptides by DCs was not impaired and cell viability was higher compared to cell scraping. Preservation of DCs with an infusible cryomedia containing Plasma-Lyte A, dextrose, sodium chloride injection, human serum albumin, and DMSO yielded higher cell viability compared to using human AB serum containing 10% DMSO. Finally, activating DCs for 16 hours with LPS and IFN-γ stimulated robust mixed leukocyte reactions (MLRs), and high IL-12p70 production in vitro that continued for 24 hours after the cryopreserved DCs were thawed and replated in fresh media. CONCLUSIONS: This study examined criteria including DC phenotype, viability, IL-12p70 production and the ability to stimulate MLR as metrics of whole oxidized tumor lysate-pulsed DC immunogenicity and functionality. Development and optimization of this unique method is now being tested in a clinical trial of autologous oxidized tumor lysate-pulsed DC in clinical-scale in recurrent ovarian, primary peritoneal or fallopian tube cancer (NCT01132014).


Subject(s)
Cell Culture Techniques/methods , Cell Extracts/pharmacology , Dendritic Cells/cytology , Dendritic Cells/metabolism , Interleukin-12/metabolism , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cryopreservation , Culture Media/pharmacology , Dendritic Cells/drug effects , Humans , Hypochlorous Acid/pharmacology , Interleukin-12/biosynthesis , Lymphocyte Culture Test, Mixed , Oxidation-Reduction/drug effects , Phenotype , Time Factors , Trypsin/metabolism
3.
Cold Spring Harb Protoc ; 2010(6): pdb.prot5436, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20516174

ABSTRACT

Recombinant simian virus 40 (rSV40)-derived vectors are particularly useful for gene delivery to bone marrow progenitor cells and their differentiated derivatives, certain types of epithelial cells (e.g., hepatocytes), and central nervous system neurons and microglia. They integrate rapidly into cellular DNA to provide long-term gene expression in vitro and in vivo in both resting and dividing cells. Here we describe a protocol for production and purification of these vectors. These procedures require only packaging cells (e.g., COS-7) and circular vector genome DNA. Amplification involves repeated infection of packaging cells with vector produced by transfection. Cotransfection is not required in any step. Viruses are purified by centrifugation using discontinuous sucrose or cesium chloride (CsCl) gradients and resulting vectors are replication-incompetent and contain no detectable wild-type SV40 revertants. These approaches are simple, give reproducible results, and may be used to generate vectors that are deleted only for large T antigen (Tag), or for all SV40-coding sequences capable of carrying up to 5 kb of foreign DNA. These vectors are best applied to long-term expression of proteins normally encoded by mammalian cells or by viruses that infect mammalian cells, or of untranslated RNAs (e.g., RNA interference). The preparative approaches described facilitate application of these vectors and allow almost any laboratory to exploit their strengths for diverse gene delivery applications.


Subject(s)
Genetic Techniques , Genetic Vectors/biosynthesis , Simian virus 40/genetics , Animals , COS Cells , Chlorocebus aethiops , Transcription, Genetic
4.
Cold Spring Harb Protoc ; 2010(6): pdb.prot5437, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20516175

ABSTRACT

Recombinant simian virus 40 (rSV40)-derived vectors are particularly useful for gene delivery to bone marrow progenitor cells and their differentiated derivatives, certain types of epithelial cells (e.g., hepatocytes), and central nervous system neurons and microglia. They integrate rapidly into cellular DNA to provide long-term gene expression in vitro and in vivo in both resting and dividing cells. Techniques used to produce, purify, and quantitate these vectors are simple, give reproducible results, and may be used to generate vectors that are deleted only for large T antigen (Tag), or for all SV40-coding sequences capable of carrying up to 5 kb of foreign DNA. Viruses are purified by centrifugation using discontinuous sucrose or cesium chloride (CsCl) gradients. Resulting vectors are replication-incompetent and contain no detectable wild-type SV40 revertants. Viruses are titered by quantitative polymerase chain reaction (qPCR), described here. qPCR measures the number of rSV40 genomes in purified viral stocks using primers specific for the rSV40, coupled with SYBR Green detection of PCR products. Sample purity is assessed using qPCR via melt (dissociation) curve analysis. The only specialized equipment necessary is a quantitative real-time PCR machine.


Subject(s)
Genetic Vectors/genetics , Recombination, Genetic/genetics , Simian virus 40/genetics , Simian virus 40/physiology , Virus Cultivation/methods , Virus Replication/physiology , Deoxyribonucleases/metabolism , Nucleic Acid Denaturation , Polymerase Chain Reaction , Reference Standards , Ribonucleases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...