Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 569-570: 159-167, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27341116

ABSTRACT

Temperature changes can drive cycling of semi-volatile pollutants between different environmental compartments (e.g. atmosphere, soil, plants). To evaluate the impact of daily temperature changes on atmospheric concentration fluctuations we employed a physically based model coupling soil, plants and the atmosphere, which accounts for heat transport, effective gas diffusion, sorption and biodegradation in the soil as well as eddy diffusion and photochemical oxidation in the atmospheric boundary layer of varying heights. The model results suggest that temperature-driven re-volatilization and uptake in soils cannot fully explain significant diurnal concentration fluctuations of atmospheric pollutants as for example observed for polychlorinated biphenyls (PCBs). This holds even for relatively low water contents (high gas diffusivity) and high sorption capacity of the topsoil (high organic carbon content and high pollutant concentration in the topsoil). Observed concentration fluctuations, however, can be easily matched if a rapidly-exchanging environmental compartment, such as a plant layer, is introduced. At elevated temperatures, plants release organic pollutants, which are rapidly distributed in the atmosphere by eddy diffusion. For photosensitive compounds, e.g. some polycyclic aromatic hydrocarbons (PAHs), decreasing atmospheric concentrations would be expected during daytime for the bare soil scenario. This decline is buffered by a plant layer, which acts as a ground-level reservoir. The modeling results emphasize the importance of a rapidly-exchanging compartment above ground to explain short-term atmospheric concentration fluctuations.


Subject(s)
Air Pollutants/analysis , Crops, Agricultural/metabolism , Soil Pollutants/analysis , Volatile Organic Compounds/analysis , Environmental Monitoring , Models, Chemical , Models, Theoretical
2.
Sci Total Environ ; 538: 789-801, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26340582

ABSTRACT

Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface. We extended the code to also include an atmospheric boundary layer where eddy diffusion takes place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several 1-D model scenarios and at various time scales (from years to centuries). Phenanthrene was chosen as a model compound, but results apply for other hydrophobic organic compounds as well. Gaseous phenanthrene was assumed to be constantly supplied to the system during a pollution period and a subsequent regulation period (with a 50% decline in the emission rate). Our results indicate that long-term soil-atmosphere exchange of phenanthrene is controlled by the soil compartment - re-volatilization thus depends on soil properties. A sensitivity analysis showed that accumulation and transport in soils in the short term is dominated by diffusion, whereas in the long term groundwater recharge and biodegradation become relevant. As expected, sorption causes retardation and slows down transport and biodegradation. If atmospheric concentration is reduced (e.g. after environmental regulations), re-volatilization from soil to the atmosphere occurs only for a relatively short time period. Therefore, the model results demonstrate that soils generally are sinks for atmospheric pollutants. The atmospheric boundary layer is only relevant for time scales of less than one month. The extended MIN3P code can also be applied to simulate fluctuating concentrations in the atmosphere, for instance due to temperature changes in the topsoil.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Models, Chemical , Soil Pollutants/analysis , Volatile Organic Compounds/analysis , Atmosphere/chemistry , Soil/chemistry , Volatilization
3.
Water Res ; 47(2): 769-80, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23200508

ABSTRACT

For several pilot-scale constructed wetlands (CWs: a planted and unplanted gravel filter) and a hydroponic plant root mat (operating at two water levels), used for treating groundwater contaminated with BTEX, the fuel additive MTBE and ammonium, the hydrodynamic behavior was evaluated by means of temporal moment analysis of outlet tracer breakthrough curves (BTCs): hydraulic indices were related to contaminant mass removal. Detailed investigation of flow within the model gravel CWs allowed estimation of local flow rates and contaminant loads within the CWs. Best hydraulics were observed for the planted gravel filter (number of continuously stirred tank reactors N = 11.3, dispersion number = 0.04, Péclet number = 23). The hydroponic plant root mat revealed lower N and pronounced dispersion tendencies, whereby an elevated water table considerably impaired flow characteristics and treatment efficiencies. Highest mass removals were achieved by the plant root mat at low level: 98% (544 mg m⁻² d⁻¹), 78% (54 mg m⁻² d⁻¹) and 74% (893 mg m⁻² d⁻¹) for benzene, MTBE and ammonium-nitrogen, respectively. Within the CWs the flow behavior was depth-dependent, with the planting and the position of the outlet tube being key factors resulting in elevated flow rate and contaminant flux immediately below the densely rooted porous media zone in the planted CW, and fast bottom flow in the unplanted reference.


Subject(s)
Environmental Pollution , Environmental Restoration and Remediation/methods , Groundwater/chemistry , Limnology/methods , Models, Structural , Water Pollutants, Chemical/analysis , Wetlands , Benzene/analysis , Benzene/chemistry , Carcinogens, Environmental/analysis , Carcinogens, Environmental/chemistry , Carcinogens, Environmental/metabolism , Geologic Sediments/chemistry , Germany , Hydroponics , Methyl Ethers/analysis , Methyl Ethers/chemistry , Methyl Ethers/metabolism , Petroleum/analysis , Pilot Projects , Plant Roots/growth & development , Plant Roots/metabolism , Poaceae/growth & development , Poaceae/metabolism , Quaternary Ammonium Compounds/analysis , Quaternary Ammonium Compounds/chemistry , Species Specificity , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical
4.
Environ Sci Technol ; 39(21): 8251-63, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16294861

ABSTRACT

A field experiment was performed in a sandy vadose zone, studying the fate of an emplaced fuel-NAPL source, composed of 13 hydrocarbons and a tracer. The UNIFAC model was used to testthe nonideal behavior of the source, and the numerical model MIN3P was used for assessing the effect of biodegradation on source evolution. The diffusive loss to the surrounding vadose zone and the atmosphere created temporary gradients in mole fractions of the individual compounds within the source NAPL. The evolution of the source composition corresponded in general with expectations based on Raoult's Law, with the exception thatthe mole fractions of aromatic compounds in the source NAPL decreased faster than fractions of aliphatic compounds of similar volatility. Calculation of activity coefficients (y) using the UNIFAC model implied nonideal conditions, with composition-dependent gammas different from 1. Positive deviations were calculated for the aromatic compounds. The effect of biodegradation on source depletion, evaluated by numerical modeling, was greater for the aromatic as compared to the aliphatic compounds. Hence, the faster depletion of the aromatic relative to aliphatic compounds of similar volatility is both a result of the nonideality of the mixture and a result of partitioning and biodegradation in the pore-water. Vapor concentrations of the compounds in the source were in reasonable agreement with predictions based on the modified Raoult's Law with the UNIFAC predicted gammas and the NAPL composition for the most volatile compounds. For the less volatile compounds, the measured vapor concentrations were lower than predicted with the largest deviations for the least volatile compounds. This field experiment illustrated that nonideal behavior and bioenhanced source depletion need to be considered at multicomponent NAPL spill sites.


Subject(s)
Fuel Oils/analysis , Hydrocarbons/analysis , Denmark
SELECTION OF CITATIONS
SEARCH DETAIL
...