Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34835714

ABSTRACT

The applicability of nano-crystalline W/Cu composites is governed by their mechanical properties and microstructural stability at high temperatures. Therefore, mechanical and structural investigations of a high-pressure torsion deformed W/Cu nanocomposite were performed up to a temperature of 600 °C. Furthermore, the material was annealed at several temperatures for 1 h within a high-vacuum furnace to determine microstructural changes and surface effects. No significant increase of grain size, but distinct evaporation of the Cu phase accompanied by Cu pool and faceted Cu particle formation could be identified on the specimen's surface. Additionally, high-temperature nanoindentation and strain rate jump tests were performed to investigate the materials mechanical response at elevated temperatures. Hardness and Young's modulus decrease were noteworthy due to temperature-induced effects and slight grain growth. The strain rate sensitivity in dependent of the temperature remained constant for the investigated W/Cu composite material. Also, the activation volume of the nano-crystalline composite increased with temperature and behaved similar to coarse-grained W. The current study extends the understanding of the high-temperature behavior of nano-crystalline W/Cu composites within vacuum environments such as future fusion reactors.

2.
Med Phys ; 48(4): 1546-1556, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33296505

ABSTRACT

PURPOSE: Correlation of characteristic surface appearance and surface roughness with measured air kerma (kinetic energy released in air) reduction of tungsten-rhenium (WRe) stationary anode surfaces. METHODS: A stationary anode test system was developed and used to alter nine initially ground sample surfaces through thermal cycling at high temperatures. A geometrical model based on high resolution surface data was implemented to correlate the measured reduction of the air kerma rate with the changing surface appearance of the samples. In addition to the nine thermally cycled samples, three samples received synthetic surface structuring to prove the applicability of the model to nonconventional surface alterations. Representative surface data and surface roughness values were acquired by laser scanning confocal microscopy. RESULTS: After thermal cycling in the stationary anode test system, the samples showed surface features comparable to rotating anodes after long-time operation. The established model enables the appearance of characteristic surface features like crack networks, pitting, and local melting to be linked to the local x-ray output at 100 kV tube voltage ,10° anode take off angle and 2 mm of added Al filtration. The results from the conducted air kerma measurements were compared to the predicted total x-ray output reduction from the geometrical model and show, on average, less than 10 % error within the 12 tested samples. In certain boundaries, the calculated surface roughness Ra showed a linear correlation with the measured air kerma reduction when samples were having comparable damaging characteristics and similar operation parameters. The orientation of the surface features had a strong impact on the measured air kerma rate which was shown by testing synthetically structured surfaces. CONCLUSIONS: The geometrical model used herein considers and describes the effect of individual surface features on the x-ray output. In close boundaries arithmetic surface roughness Ra was found to be a useful characteristic value on estimating the effect of surface damage on total x-ray output.


Subject(s)
Tungsten , Electrodes , Fluoroscopy , Radiography , X-Rays
3.
Materials (Basel) ; 13(20)2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33092297

ABSTRACT

Hydrogen embrittlement (HE) is one of the main limitations in the use of advanced high-strength steels in the automotive industry. To have a better understanding of the interaction between hydrogen (H) and a complex phase steel, an in-situ method with plasma charging was applied in order to provide continuous H supply during mechanical testing in order to avoid H outgassing. For such fast-H diffusion materials, only direct observation during in-situ charging allows for addressing H effects on materials. Different plasma charging conditions were analysed, yet there was not a pronounced effect on the mechanical properties. The H concentration was calculated while using a simple analytical model as well as a simulation approach, resulting in consistent low H values, below the critical concentration to produce embrittlement. However, the dimple size decreased in the presence of H and, with increasing charging time, the crack propagation rate increased. The rate dependence of flow properties of the material was also investigated, proving that the material has no strain rate sensitivity, which confirmed that the crack propagation rate increased due to H effects. Even though the H concentration was low in the experiments that are presented here, different technological alternatives can be implemented in order to increase the maximum solute concentration.

4.
Nanomaterials (Basel) ; 8(6)2018 May 24.
Article in English | MEDLINE | ID: mdl-29795029

ABSTRACT

Nanoporous metals have attracted attention in various research fields in the past years since their unique microstructures make them favorable for catalytic, sensory or microelectronic applications. Moreover, the refinement of the ligaments down to the nanoscale leads to an exceptionally high strength. To guarantee a smooth implementation of nanoporous metals into modern devices their thermo-mechanical behavior must be properly understood. Within this study the mechanical flow properties of nanoporous Au were investigated at elevated temperatures up to 300 °C. In contrast to the conventional synthesis by dealloying of AuAg precursors, the present foam was fabricated via severe plastic deformation of an AuFe nanocomposite and subsequent selective etching of iron, resulting in Au ligaments consisting of nanocrystalline grains, while remaining Fe impurities excessively stabilize the microstructure. A recently developed spherical nanoindentation protocol was used to extract the stress-strain curves of nanoporous Au. A tremendous increase of yield strength due to ligament and grain refinement was observed, which is largely maintained at high temperatures. Reviewing literature will evidence that the combined nanocrystalline and nanoporous structure leads to remarkable mechanical properties. Furthermore, comparison to a previous Berkovich nanoindentation study outlines the conformity of different indentation techniques.

5.
JOM (1989) ; 69(11): 2246-2255, 2017.
Article in English | MEDLINE | ID: mdl-29070938

ABSTRACT

Nanoindentation became a versatile tool for testing local mechanical properties beyond hardness and modulus. By adapting standard nanoindentation test methods, simple protocols capable of probing thermally activated deformation processes can be accomplished. Abrupt strain-rate changes within one indentation allow determining the strain-rate dependency of hardness at various indentation depths. For probing lower strain-rates and excluding thermal drift influences, long-term creep experiments can be performed by using the dynamic contact stiffness for determining the true contact area. From both procedures hardness and strain-rate, and consequently strain-rate sensitivity and activation volume can be reliably deducted within one indentation, permitting information on the locally acting thermally activated deformation mechanism. This review will first discuss various testing protocols including possible challenges and improvements. Second, it will focus on different examples showing the direct influence of crystal structure and/or microstructure on the underlying deformation behavior in pure and highly alloyed material systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...