Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Main subject
Publication year range
1.
Small ; : e2401891, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004881

ABSTRACT

Various polytypes of van der Waals (vdW) materials can be formed by sulfur and tin, which exhibit distinctive and complementary electronic properties. Hence, these materials are attractive candidates for the design of multifunctional devices. This work demonstrates direct selective growth of tin sulfides by laser irradiation. A 532 nm continuous wave laser is used to synthesize centimeter-scale tin sulfide tracks from single source precursor tin(II) o-ethylxanthate under ambient conditions. Modulation of laser irradiation conditions enables tuning of the dominant phase of tin sulfide as well as SnS2/SnS heterostructures formation. An in-depth investigation of the morphological, structural, and compositional characteristics of the laser-synthesized tin sulfide microstructures is reported. Furthermore, laser-synthesized tin sulfides photodetectors show broad spectral response with relatively high photoresponsivity up to 4 AW-1 and fast switching time (τ rise = 1.8 ms and τ fall = 16 ms). This approach is versatile and can be exploited in various fields such as energy conversion and storage, catalysis, chemical sensors, and optoelectronics.

2.
Nanoscale ; 15(47): 19351-19358, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38013470

ABSTRACT

Single-walled carbon nanotubes (SWCNTs) are considered to be promising material platforms for various photodetectors (including phototransistors) due to their unique optoelectrical properties (e.g., high mobility and a wide variety of bandgap values). Herein, we present highly sensitive phototransistors which utilised sparse networks of SWCNTs on a silicon/silica substrate and operated by means of the photogating effect. The response of SWCNTs to photo-induced electrostatic charges (photogating effect) was highly dependent on the conductivity type of the channel, which was "metallic" or "semiconducting", depending on the SWCNT density. We determined the performance of these transistors depending on the characteristics of the substrate and conductivity type of the SWCNT channel. The optimized configuration of phototransistors with a channel comprising a sparse network of SWCNTs permitted improvement in the specific detectivity and relative response compared with previously reported photodetectors based on graphene and carbon nanotubes. We demonstrated an absolute responsivity of ∼60 A W-1 at an incident light power of ∼2 nW, specific detectivity of 7.8 × 1011 cm·Hz1/2 W-1, and response time of 300 µs. These data revealed the high potential of photogating-based SWCNTs detectors for extremely weak signals with a high signal-to-noise ratio.

3.
Micromachines (Basel) ; 14(5)2023 May 12.
Article in English | MEDLINE | ID: mdl-37241659

ABSTRACT

The direct laser synthesis of periodically nanostructured 2D transition metal dichalcogenide (2D-TMD) films, from single source precursors, is presented here. Laser synthesis of MoS2 and WS2 tracks is achieved by localized thermal dissociation of Mo and W thiosalts, caused by the strong absorption of continuous wave (c.w.) visible laser radiation by the precursor film. Moreover, within a range of irradiation conditions we have observed occurrence of 1D and 2D spontaneous periodic modulation in the thickness of the laser-synthesized TMD films, which in some cases is so extreme that it results in the formation of isolated nanoribbons with a width of ~200 nm and a length of several micrometers. The formation of these nanostructures is attributed to the effect that is known as laser-induced periodic surface structures (LIPSS), which is caused by self-organized modulation of the incident laser intensity distribution due to optical feedback from surface roughness. We have fabricated two terminal photoconductive detectors based on nanostructured and continuous films and we show that the nanostructured TMD films exhibit enhanced photo-response, with photocurrent yield increased by three orders of magnitude as compared to their continuous counterparts.

4.
Sci Rep ; 11(1): 5211, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33664284

ABSTRACT

Laser processing is a highly versatile technique for the post-synthesis treatment and modification of transition metal dichalcogenides (TMDCs). However, to date, TMDCs synthesis typically relies on large area CVD growth and lithographic post-processing for nanodevice fabrication, thus relying heavily on complex, capital intensive, vacuum-based processing environments and fabrication tools. This inflexibility necessarily restricts the development of facile, fast, very low-cost synthesis protocols. Here we show that direct, spatially selective synthesis of 2D-TMDCs devices that exhibit excellent electrical, Raman and photoluminescence properties can be realized using laser printing under ambient conditions with minimal lithographic or thermal overheads. Our simple, elegant process can be scaled via conventional laser printing approaches including spatial light modulation and digital light engines to enable mass production protocols such as roll-to-roll processing.

5.
Appl Opt ; 59(22): 6744-6750, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32749385

ABSTRACT

Terahertz time-domain spectroscopy (TDS) is a powerful characterization technique which allows for the frequency-dependent complex refractive index of a sample to be determined. This is achieved by comparing the time-domain of a pulse transmitted through air to a pulse transmitted through a material sample; however, the requirement for an independent reference scan can introduce errors due to laser fluctuations, mechanical drift, and atmospheric absorption. In this paper, we present a method for determining complex refractive index without an air reference, in which the first pulse transmitted through the sample is compared against the "echo", where the internal reflections delay the transmission of the echo pulse. We present a benchmarking experiment in which the echo reference method is compared to the traditional air method, and show that the echo method is able to reduce variation in real refractive index.

6.
Opt Express ; 28(12): 17630-17642, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32679968

ABSTRACT

A novel technique for realization of configurable/one-time programmable (OTP) silicon photonic circuits is presented. Once the proposed photonic circuit is programmed, its signal routing is retained without the need for additional power consumption. This technology can potentially enable a multi-purpose design of photonic chips for a range of different applications and performance requirements, as it can be programmed for each specific application after chip fabrication. Therefore, the production costs per chip can be reduced because of the increase in production volume, and rapid prototyping of new photonic circuits is enabled. Essential building blocks for the configurable circuits in the form of erasable directional couplers (DCs) were designed and fabricated, using ion implanted waveguides. We demonstrate permanent switching of optical signals between the drop port and through the port of the DCs using a localized post-fabrication laser annealing process. Proof-of-principle demonstrators in the form of generic 1×4 and 2×2 programmable switching circuits were fabricated and subsequently programmed.

7.
Sci Rep ; 10(1): 1696, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32015500

ABSTRACT

Unlike MoS2 ultra-thin films, where solution-based single source precursor synthesis for electronic applications has been widely studied, growing uniform and large area few-layer WS2 films using this approach has been more challenging. Here, we report a method for growth of few-layer WS2 that results in continuous and uniform films over centimetre scale. The method is based on the thermolysis of spin coated ammonium tetrathiotungstate ((NH4)2WS4) films by two-step high temperature annealing without additional sulphurization. This facile and scalable growth method solves previously encountered film uniformity issues. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to confirm the few-layer nature of WS2 films. Raman and X-Ray photoelectron spectroscopy (XPS) revealed that the synthesized few-layer WS2 films are highly crystalline and stoichiometric. Finally, WS2 films as-deposited on SiO2/Si substrates were used to fabricate a backgated Field Effect Transistor (FET) device for the first time using this precursor to demonstrate the electronic functionality of the material and further validate the method.

8.
Opt Express ; 27(4): 4462-4470, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-30876064

ABSTRACT

We report the fabrication of low-loss, low temperature deposited polysilicon waveguides via laser crystallization. The process involves pre-patterning amorphous silicon films to confine the thermal energy during the crystallization phase, which helps to control the grain growth and reduce the heat transfer to the surrounding media, making it compatible with CMOS integration. Micro-Raman spectroscopy, Secco etching and X-ray diffraction measurements reveal the high crystalline quality of the processed waveguides with the formation of millimeter long crystal grains. Optical losses as low as 5.3 dB/cm have been measured, indicating their suitability for the development of high-density integrated circuits.

9.
ACS Nano ; 12(6): 5940-5945, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29771493

ABSTRACT

We demonstrate experimentally nonvolatile, all-optical control of graphene's charge transport properties by virtue of an Fe:LiNbO3 photoconductive substrate. The substrate can register and sustain photoinduced charge distributions which modify locally the electrostatic environment of the graphene monolayer and allow spatial control of graphene resistivity. We present light-induced changes of graphene sheet resistivity as high as ∼370 Ω/sq (∼2.6-fold increase) under spatially nonuniform light illumination. The light-induced modifications in the sheet resistivity are stable at room temperature but can be reversed by uniform illumination or thermal annealing (100 °C for 4 h), thus restoring graphene's electrical properties to their initial, preillumination values. The process can be subsequently repeated by further spatially nonuniform illumination.

10.
Nat Mater ; 13(12): 1122-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25262096

ABSTRACT

For decades now, silicon has been the workhorse of the microelectronics revolution and a key enabler of the information age. Owing to its excellent optical properties in the near- and mid-infrared, silicon is now promising to have a similar impact on photonics. The ability to incorporate both optical and electronic functionality in a single material offers the tantalizing prospect of amplifying, modulating and detecting light within a monolithic platform. However, a direct consequence of silicon's transparency is that it cannot be used to detect light at telecommunications wavelengths. Here, we report on a laser processing technique developed for our silicon fibre technology through which we can modify the electronic band structure of the semiconductor material as it is crystallized. The unique fibre geometry in which the silicon core is confined within a silica cladding allows large anisotropic stresses to be set into the crystalline material so that the size of the bandgap can be engineered. We demonstrate extreme bandgap reductions from 1.11 eV down to 0.59 eV, enabling optical detection out to 2,100 nm.

11.
Opt Express ; 18(11): 11508-13, 2010 May 24.
Article in English | MEDLINE | ID: mdl-20589011

ABSTRACT

Annealing of micro-structured lithium niobate substrates at temperatures close to, but below the melting point, allows surface tension to reshape preferentially melted surface zones of the crystal. The reshaped surface re-crystallizes upon cooling to form a single crystal again as it is seeded by the bulk which remains solid throughout the process. This procedure yields ultra-smooth single crystal superstructures suitable for the fabrication of photonic micro-components with low scattering loss.


Subject(s)
Oxides/chemical synthesis , Hardness , Materials Testing , Miniaturization , Niobium , Photons , Refractometry , Surface Tension
SELECTION OF CITATIONS
SEARCH DETAIL
...