Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Res ; 44(1): 269-280, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29572644

ABSTRACT

Memory and cognitive decline are the product of numerous physiological changes within the aging brain. Multiple theories have focused on the oxidative, calcium, cholinergic, vascular, and inflammation hypotheses of brain aging, with recent evidence suggesting that reductions in insulin signaling may also contribute. Specifically, a reduction in insulin receptor density and mRNA levels has been implicated, however, overcoming these changes remains a challenge. While increasing insulin receptor occupation has been successful in offsetting cognitive decline, alternative molecular approaches should be considered as they could bypass the need for brain insulin delivery. Moreover, this approach may be favorable to test the impact of continued insulin receptor signaling on neuronal function. Here we used hippocampal cultures infected with lentivirus with or without IRß, a constitutively active, truncated form of the human insulin receptor, to characterize the impact continued insulin receptor signaling on voltage-gated calcium channels. Infected cultures were harvested between DIV 13 and 17 (48 h after infection) for Western blot analysis on pAKT and AKT. These results were complemented with whole-cell patch-clamp recordings of individual pyramidal neurons starting 96 h post-infection. Results indicate that while a significant increase in neuronal pAKT/AKT ratio was seen at the time point tested, effects on voltage-gated calcium channels were not detected. These results suggest that there is a significant difference between constitutively active insulin receptors and the actions of insulin on an intact receptor, highlighting potential alternate mechanisms of neuronal insulin resistance and mode of activation.


Subject(s)
Calcium Channels/metabolism , Hippocampus/metabolism , Neurons/metabolism , Receptor, Insulin/biosynthesis , Animals , Cells, Cultured , Gene Expression , Humans , Rats , Rats, Sprague-Dawley , Receptor, Insulin/genetics
2.
Neuroscience ; 306: 115-22, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26297899

ABSTRACT

Glucose concentration changes in the nucleus tractus solitarius (NTS) affect visceral function and metabolism by influencing central vagal circuits, especially inhibitory, GABAergic NTS neurons. Acutely elevated glucose can alter NTS neuron activity, and prolonged hyperglycemia and hypoinsulemia in animal models of type 1 diabetes results in plasticity of neural responses in the NTS. NTS neurons contributing to metabolic regulation therefore act as central glucose sensors and are functionally altered in type 1 diabetes. Glucokinase (GCK) mediates cellular utilization of glucose, linking increased glucose concentration to excitability changes mediated by ATP-sensitive K(+) channels (KATP). Using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), Western blot, and in vitro electrophysiology, we tested the hypothesis that changes in GCK expression in the NTS accompany the development of diabetes symptoms in the streptozotocin (STZ)-treated mouse model of type 1 diabetes. After several days of hyperglycemia in STZ-treated mice, RNA expression of GCK, but not Kir6.2 or SUR1, was decreased versus controls in the dorsal vagal complex. Electrophysiological recordings in vitro indicated that neural responses to acute hyperglycemia, and synaptic responsiveness to blockade of GCK with glucosamine, were attenuated in GABAergic NTS neurons from STZ-treated mice, consistent with reduced molecular and functional expression of GCK in the vagal complex of hyperglycemic, STZ-treated mice. Altered autonomic responses to glucose in type 1 diabetes may therefore involve reduced functional GCK expression in the dorsal vagal complex.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/physiopathology , Glucokinase/metabolism , Solitary Nucleus/metabolism , Solitary Nucleus/physiopathology , Action Potentials/drug effects , Animals , Diabetes Mellitus, Type 1/chemically induced , Disease Models, Animal , GABAergic Neurons/metabolism , Glucokinase/antagonists & inhibitors , Glucosamine/pharmacology , Glucose/pharmacology , KATP Channels/metabolism , Male , Mice , Mice, Transgenic , Streptozocin , Synaptic Potentials/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...