Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Comp Physiol B ; 183(1): 71-82, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22911375

ABSTRACT

This study investigated the standard metabolic rate (SMR) and evaporative water loss (EWL) responses of three Australian trapdoor-constructing mygalomorph spider species, two undescribed arid-zone species (Aganippe 'Tropicana A' and A. 'Tropicana B') and a mesic-dwelling species (A. rhaphiduca) to acute environmental regimes of temperature and relative humidity. There were significant effects of species, temperature, and relative humidity on SMR. SMR was lower for A. raphiduca than both A. 'Tropicana' spp. with no difference between the two A. 'Tropicana' spp. Metabolic rate increased at higher temperature and relative humidity for all three species. There were significant effects of species, temperature, and relative humidity on EWL. The mesic Aganippe species had a significantly higher EWL than either arid Tropicana species. EWL was significantly higher at lower relative humidity. Our results suggest an environmental effect on EWL but not SMR, and that mygalomorphs are so vulnerable to desiccation that the burrow provides a crucial refuge to ameliorate the effects of low environmental humidity. We conclude that mygalomorphs are highly susceptible to disturbance, and are of high conservation value as many are short-range endemics.


Subject(s)
Energy Metabolism , Spiders/physiology , Water-Electrolyte Balance , Animals , Behavior, Animal , Ecosystem , Endangered Species , Female , Humidity , Respiratory Physiological Phenomena , Species Specificity , Spiders/growth & development , Temperature , Western Australia
2.
Mol Ecol ; 20(15): 3219-36, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21689192

ABSTRACT

Southwestern Australia has been recognized as a biodiversity hot spot of global significance, and it is particularly well known for its considerable diversity of flowering plant species. Questions of interest are how this region became so diverse and whether its fauna show similar diverse patterns of speciation. Here, we carried out a phylogeographic study of trapdoor spiders (Migidae: Moggridgea), a presumed Gondwanan lineage found in wet forest localities across southwestern Australia. Phylogenetic, molecular clock and population genetic analyses of mitochondrial (mtDNA) COI gene and ITS rRNA (internal transcribed spacer) data revealed considerable phylogeographic structuring of Moggridgea populations, with evidence for long-term (>3 million years) isolation of at least nine populations in different geographic locations, including upland regions of the Stirling and Porongurup Ranges. High levels of mtDNA divergence and no evidence of recent mitochondrial gene flow among valley populations of the Stirling Range suggest that individual valleys have acted as refugia for the spiders throughout the Pleistocene. Our findings support the hypothesis that climate change, particularly the aridification of Australia after the late Miocene, and the topography of the landscape, which allowed persistence of moist habitats, have been major drivers of speciation in southwestern Australia.


Subject(s)
Evolution, Molecular , Genetics, Population , Phylogeography , Spiders/genetics , Animals , Australia , DNA, Mitochondrial/genetics , DNA, Ribosomal Spacer/genetics , Phylogeny , Sequence Analysis, DNA
3.
J Anim Ecol ; 80(3): 558-68, 2011 May.
Article in English | MEDLINE | ID: mdl-21198590

ABSTRACT

1. Developing a predictive understanding of how species assemblages respond to fire is a key conservation goal. In moving from solely describing patterns following fire to predicting changes, plant ecologists have successfully elucidated generalizations based on functional traits. Using species traits might also allow better predictions for fauna, but there are few empirical tests of this approach. 2. We examined whether species traits changed with post-fire age for spiders in 27 sites, representing a chronosequence of 0-20 years post-fire. We predicted a priori whether spiders with ten traits associated with survival, dispersal, reproduction, resource-utilization and microhabitat occupation would increase or decrease with post-fire age. We then tested these predictions using a direct (fourth-corner on individual traits and composite traits) and an indirect (emergent groups) approach, comparing the benefits of each and also examining the degree to which traits were intercorrelated. 3. For the seven individual traits that were significant, three followed predictions (body size, abundance of burrow ambushers and burrowers was greater in recently burnt sites); two were opposite (species with heavy sclerotisation of the cephalothorax and longer time to maturity were in greater abundance in long unburnt and recently burnt sites respectively); and two displayed response patterns more complex than predicted (abdominal scutes displayed a U-shaped response and dispersal ability a hump shaped curve). However, within a given trait, there were few significant differences among post-fire ages. 4. Several traits were intercorrelated and scores based on composite traits used in a fourth-corner analysis found significant patterns, but slightly different to those using individual traits. Changes in abundance with post-fire age were significant for three of the five emergent groups. The fourth-corner analysis yielded more detailed results, but overall we consider the two approaches complementary. 5. While we found significant differences in traits with post-fire age, our results suggest that a trait-based approach may not increase predictive power, at least for the assemblages of spiders we studied. That said, there are many refinements to faunal traits that could increase predictive power.


Subject(s)
Adaptation, Biological , Biota , Fires , Spiders/physiology , Animals , Conservation of Natural Resources , Ecosystem , Population Dynamics , Principal Component Analysis , Reproduction , Species Specificity , Spiders/anatomy & histology , Survival Analysis , Time Factors , Western Australia
SELECTION OF CITATIONS
SEARCH DETAIL
...