Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e17076, 2024.
Article in English | MEDLINE | ID: mdl-38708350

ABSTRACT

Although genome-scale data generation is becoming more tractable for phylogenetics, there are large quantities of single gene fragment data in public repositories and such data are still being generated. We therefore investigated whether single mitochondrial genes are suitable proxies for phylogenetic reconstruction as compared to the application of full mitogenomes. With near complete taxon sampling for the southern African dwarf chameleons (Bradypodion), we estimated and compared phylogenies for the complete mitogenome with topologies generated from individual mitochondrial genes and various combinations of these genes. Our results show that the topologies produced by single genes (ND2, ND4, ND5, COI, and COIII) were analogous to the complete mitogenome, suggesting that these genes may be reliable markers for generating mitochondrial phylogenies in lieu of generating entire mitogenomes. In contrast, the short fragment of 16S commonly used in herpetological systematics, produced a topology quite dissimilar to the complete mitogenome and its concatenation with ND2 weakened the resolution of ND2. We therefore recommend the avoidance of this 16S fragment in future phylogenetic work.


Subject(s)
Genome, Mitochondrial , Lizards , Phylogeny , Animals , Genome, Mitochondrial/genetics , Lizards/genetics , Genes, Mitochondrial/genetics
2.
R Soc Open Sci ; 11(1): 231554, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38234439

ABSTRACT

We conducted a study on interpopulation variation of colour patterns in two congeneric chameleon species, which have an analogous life history. Both species are able to rapidly change colour pattern, and their context-dependent colour patterns often vary across a wide geographical range. Specifically, we tested four hypotheses that can explain the observed interpopulation variation of colour patterns by a series of behavioural field trials where the colour patterns of individuals were recorded and later analysed by a deep neural network algorithm. We used redundancy analysis to relate genetic, spectral and behavioural predictors to interpopulation colour pattern distance. Our results showed that both isolation by distance (IBD) and alternative mating tactics were significant predictors for interpopulation colour pattern variation in Chamaeleo chamaeleon males. By contrast, in Chamaeleo dilepis, the interpopulation colour pattern variation was largely explained by IBD, and evidence for alternative mating tactics was absent. In both chameleon species, the environmental colours showed no evidence of influencing chameleon interpopulation colour pattern variation, regardless of sex or behavioural context. This contrasting finding suggests that interpopulation context-dependent colour pattern variations in each species are maintained under a different set of selective pressures or circumstances.

3.
Sci Rep ; 12(1): 14810, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36045215

ABSTRACT

A longstanding question in evolutionary biology is how natural selection and environmental pressures shape the mitochondrial genomic architectures of organisms. Mitochondria play a pivotal role in cellular respiration and aerobic metabolism, making their genomes functionally highly constrained. Evaluating selective pressures on mitochondrial genes can provide functional and ecological insights into the evolution of organisms. Collembola (springtails) are an ancient hexapod group that includes the oldest terrestrial arthropods in the fossil record, and that are closely associated with soil environments. Of interest is the diversity of habitat stratification preferences (life forms) exhibited by different species within the group. To understand whether signals of positive selection are linked to the evolution of life forms, we analysed 32 published Collembola mitogenomes in a phylomitogenomic framework. We found no evidence that signatures of selection are correlated with the evolution of novel life forms, but rather that mutations have accumulated as a function of time. Our results highlight the importance of nuclear-mitochondrial interactions in the evolution of collembolan life forms and that mitochondrial genomic data should be interpreted with caution, as complex selection signals may complicate evolutionary inferences.


Subject(s)
Arthropods , Genome, Mitochondrial , Animals , Arthropods/genetics , Arthropods/metabolism , Evolution, Molecular , Fossils , Genes, Mitochondrial , Insecta/genetics , Phylogeny
4.
Mol Phylogenet Evol ; 175: 107578, 2022 10.
Article in English | MEDLINE | ID: mdl-35809854

ABSTRACT

Molecular phylogenetics and the application of species delimitation methods have proven useful in addressing limitations associated with morphology based taxonomy and have highlighted the inconsistencies in the current taxonomy for many groups. For example, the genus Chamaeleo, which comprises 14 species with large distributions across mainland Africa and parts of Eurasia, exhibits relatively minor phenotypic differentiation between species, leading to speculation regarding the presence of cryptic diversity in the genus. Therefore, the aims of the present study were to construct a robust and comprehensive phylogeny of the genus and highlight potential species-level cryptic diversity. Additionally, we sought to ascertain the most likely biogeographic origin of the genus and understand its spatio-temporal diversification. Accordingly, we made use of species delimitation methods (Bayesian and divergence based) to investigate the extent of cryptic diversity in Chamaeleo, and applied an ancestral area reconstruction to examine the biogeographic origin of the group. Our phylogenetic analyses suggested the presence of at least 18 taxa within Chamaeleo. Notably, three taxa could be recognised within C. dilepis, none of which are equivalent in context with any of the currently described subspecies. There were also three taxa within C. gracilis and two within C. anchietae. The single available tissue specimen identified as C. necasi was embedded within the C. gracilis clade. Our ancestral area reconstruction points to a southern African/Zambezian origin for Chamaeleo, with diversification beginning during the cooling and aridification of Africa that characterised the Oligocene Epoch, ca. 34-23 Mya (Million years ago). Species-level diversification began in the Miocene Epoch (ca. 23-5 Mya), possibly tracking the aridification that triggered the shift from forest to more open, mesic savanna for most clades, but with tectonic events influencing speciation in a Palearctic clade. These findings lay the foundation for a future integrative taxonomic re-evaluation of Chamaeleo, which will be supported with additional lines of evidence before implementing any taxonomic changes.


Subject(s)
Forests , Africa, Southern , Bayes Theorem , Phylogeny , Phylogeography
5.
Genes (Basel) ; 12(3)2021 03 04.
Article in English | MEDLINE | ID: mdl-33806647

ABSTRACT

During austral winter, the southern and eastern coastlines of South Africa witness one of the largest animal migrations on the planet, the KwaZulu-Natal sardine run. Hundreds of millions of temperate sardines, Sardinops sagax, form large shoals that migrate north-east towards the subtropical Indian Ocean. Recent studies have highlighted the role that genetic and environmental factors play in sardine run formation. In the present study, we used massively parallel sequencing to assemble and annotate the first reference transcriptome from the liver cells of South African sardines, and to investigate the functional content and transcriptomic diversity. A total of 1,310,530 transcripts with an N50 of 1578 bp were assembled de novo. Several genes and core biochemical pathways that modulate energy production, energy storage, digestion, secretory processes, immune responses, signaling, regulatory processes, and detoxification were identified. The functional content of the liver transcriptome from six individuals that participated in the 2019 sardine run demonstrated heterogeneous levels of variation. Data presented in the current study provide new insights into the complex function of the liver transcriptome in South African sardines.


Subject(s)
Fish Proteins/genetics , Fishes/genetics , Gene Expression Profiling/veterinary , Liver/chemistry , Animal Migration , Animals , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Sequence Analysis, RNA , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...