Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 129(6): 067401, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36018667

ABSTRACT

The seminal work by Kazimierczuk et al. [Nature 514, 343 (2014)10.1038/nature13832] has shown the existence of highly excited exciton states in a regime, where the correspondence principle is applicable and quantum mechanics turns into classical mechanics; however, any interpretation of exciton spectra based on a classical approach to excitons is still missing. Here, we close this gap by computing and comparing quantum mechanical and semiclassical recurrence spectra of cuprous oxide. We show that the quantum mechanical recurrence spectra exhibit peaks, which, by application of semiclassical theories and a scaling transformation, can be directly related to classical periodic exciton orbits. The application of semiclassical theories to exciton physics requires the detailed analysis of the classical exciton dynamics, including three-dimensional orbits, which strongly deviate from hydrogenlike Keplerian orbits. Our findings illuminate important aspects of excitons in semiconductors by directly relating the quantum mechanical band structure splittings of excitons to the corresponding classical exciton dynamics.

2.
J Chem Phys ; 156(3): 034103, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35065560

ABSTRACT

The behavior of a particle in a solvent has been framed using stochastic dynamics since the early theory of Kramers. A particle in a chemical reaction reacts slower in a diluted solvent because of the lack of energy transfer via collisions. The flux-over-population reaction rate constant rises with increasing density before falling again for very dense solvents. This Kramers turnover is observed in this paper at intermediate and high temperatures in the backward reaction of the LiNC ⇌ LiCN isomerization via Langevin dynamics and mean first-passage times (MFPTs). It is in good agreement with the Pollak-Grabert-Hänggi (PGH) reaction rates at lower temperatures. Furthermore, we find a square root behavior of the reaction rate at high temperatures and have made direct comparisons of the methods in the intermediate- and high-temperature regimes, all suggesting increased ranges in accuracy of both the PGH and MFPT approaches.

3.
Phys Rev E ; 103(2-1): 022121, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33736042

ABSTRACT

The framework of transition state theory (TST) provides a powerful way for analyzing the dynamics of physical and chemical reactions. While TST has already been successfully used to obtain reaction rates for systems with a single time-dependent saddle point, multiple driven saddles have proven challenging because of their fractal-like phase space structure. This paper presents the construction of an approximately recrossing-free dividing surface based on the normally hyperbolic invariant manifold in a time-dependent two-saddle model system. Based on this, multiple methods for obtaining instantaneous (time-resolved) decay rates of the underlying activated complex are presented and their results discussed.

4.
J Chem Phys ; 153(8): 084115, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872891

ABSTRACT

The framework of transition state theory relies on the determination of a geometric structure identifying reactivity. It replaces the laborious exercise of following many trajectories for a long time to provide chemical reaction rates and pathways. In this paper, recent advances in constructing this geometry even in time-dependent systems are applied to the LiCN ⇌ LiNC isomerization reaction driven by an external field. We obtain decay rates of the reactant population close to the transition state by exploiting local properties of the dynamics of trajectories in and close to it. We find that the external driving has a large influence on these decay rates when compared to the non-driven isomerization reaction. This, in turn, provides renewed evidence for the possibility of controlling chemical reactions, like this one, through external time-dependent fields.

5.
Phys Rev E ; 101(2-1): 022219, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32168686

ABSTRACT

Chemical reactions in multidimensional systems are often described by a rank-1 saddle, whose stable and unstable manifolds intersect in the normally hyperbolic invariant manifold (NHIM). Trajectories started on the NHIM in principle never leave this manifold when propagated forward or backward in time. However, the numerical investigation of the dynamics on the NHIM is difficult because of the instability of the motion. We apply a neural network to describe time-dependent NHIMs and use this network to stabilize the motion on the NHIM for a periodically driven model system with two degrees of freedom. The method allows us to analyze the dynamics on the NHIM via Poincaré surfaces of section (PSOS) and to determine the transition-state (TS) trajectory as a periodic orbit with the same periodicity as the driving saddle, viz. a fixed point of the PSOS surrounded by near-integrable tori. Based on transition state theory and a Floquet analysis of a periodic TS trajectory we compute the rate constant of the reaction with significantly reduced numerical effort compared to the propagation of a large trajectory ensemble.

6.
Phys Rev E ; 102(6-1): 062204, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33466091

ABSTRACT

Recent work has shown that in a nonthermal, multidimensional system, the trajectories in the activated complex possess different instantaneous and time-averaged reactant decay rates. Under dissipative dynamics, it is known that these trajectories, which are bound on the normally hyperbolic invariant manifold (NHIM), converge to a single trajectory over time. By subjecting these dissipative systems to thermal noise, we find fluctuations in the saddle-bound trajectories and their instantaneous decay rates. Averaging over these instantaneous rates results in the decay rate of the activated complex in a thermal system. We find that the temperature dependence of the activated complex decay in a thermal system can be linked to the distribution of the phase space resolved decay rates on the NHIM in the nondissipative case. By adjusting the external driving of the reaction, we show that it is possible to influence how the decay rate of the activated complex changes with rising temperature.

7.
J Phys Chem B ; 123(9): 2070-2086, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30730733

ABSTRACT

Reaction rates of chemical reactions under nonequilibrium conditions can be determined through the construction of the normally hyperbolic invariant manifold (NHIM) [and moving dividing surface (DS)] associated with the transition state trajectory. Here, we extend our recent methods by constructing points on the NHIM accurately even for multidimensional cases. We also advance the implementation of machine learning approaches to construct smooth versions of the NHIM from a known high-accuracy set of its points. That is, we expand on our earlier use of neural nets and introduce the use of Gaussian process regression for the determination of the NHIM. Finally, we compare and contrast all of these methods for a challenging two-dimensional model barrier case so as to illustrate their accuracy and general applicability.

8.
J Chem Phys ; 151(24): 244108, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31893901

ABSTRACT

Chemical reactions in multidimensional driven systems are typically described by a time-dependent rank-1 saddle associated with one reaction and several orthogonal coordinates (including the solvent bath). To investigate reactions in such systems, we develop a fast and robust method-viz., local manifold analysis (LMA)-for computing the instantaneous decay rate of reactants. Specifically, it computes the instantaneous decay rates along saddle-bound trajectories near the activated complex by exploiting local properties of the stable and unstable manifold associated with the normally hyperbolic invariant manifold (NHIM). The LMA method offers substantial reduction in numerical effort and increased reliability in comparison with direct ensemble integration. It provides an instantaneous flux that can be assigned to every point on the NHIM and which is associated with a trajectory-regardless of whether it is periodic, quasiperiodic, or chaotic-that is bound on the NHIM. The time average of these fluxes in the driven system corresponds to the average rate through a given local section containing the corresponding point on the NHIM. We find good agreement between the results of the LMA and direct ensemble integration obtained using numerically constructed, recrossing-free dividing surfaces.

9.
Phys Rev E ; 97(4-1): 042309, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29758767

ABSTRACT

In a dynamical system, the transition between reactants and products is typically mediated by an energy barrier whose properties determine the corresponding pathways and rates. The latter is the flux through a dividing surface (DS) between the two corresponding regions, and it is exact only if it is free of recrossings. For time-independent barriers, the DS can be attached to the top of the corresponding saddle point of the potential energy surface, and in time-dependent systems, the DS is a moving object. The precise determination of these direct reaction rates, e.g., using transition state theory, requires the actual construction of a DS for a given saddle geometry, which is in general a demanding methodical and computational task, especially in high-dimensional systems. In this paper, we demonstrate how such time-dependent, global, and recrossing-free DSs can be constructed using neural networks. In our approach, the neural network uses the bath coordinates and time as input, and it is trained in a way that its output provides the position of the DS along the reaction coordinate. An advantage of this procedure is that, once the neural network is trained, the complete information about the dynamical phase space separation is stored in the network's parameters, and a precise distinction between reactants and products can be made for all possible system configurations, all times, and with little computational effort. We demonstrate this general method for two- and three-dimensional systems and explain its straightforward extension to even more degrees of freedom.

10.
J Chem Phys ; 147(6): 064101, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28810775

ABSTRACT

In chemical or physical reaction dynamics, it is essential to distinguish precisely between reactants and products for all times. This task is especially demanding in time-dependent or driven systems because therein the dividing surface (DS) between these states often exhibits a nontrivial time-dependence. The so-called transition state (TS) trajectory has been seen to define a DS which is free of recrossings in a large number of one-dimensional reactions across time-dependent barriers and thus, allows one to determine exact reaction rates. A fundamental challenge to applying this method is the construction of the TS trajectory itself. The minimization of Lagrangian descriptors (LDs) provides a general and powerful scheme to obtain that trajectory even when perturbation theory fails. Both approaches encounter possible breakdowns when the overall potential is bounded, admitting the possibility of returns to the barrier long after the trajectories have reached the product or reactant wells. Such global dynamics cannot be captured by perturbation theory. Meanwhile, in the LD-DS approach, it leads to the emergence of additional local minima which make it difficult to extract the optimal branch associated with the desired TS trajectory. In this work, we illustrate this behavior for a time-dependent double-well potential revealing a self-similar structure of the LD, and we demonstrate how the reflections and side-minima can be addressed by an appropriate modification of the LD associated with the direct rate across the barrier.

11.
Phys Rev E ; 95(6-1): 062205, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28709183

ABSTRACT

Recent investigations on the Hamiltonian of excitons by Schweiner et al.. [Phys. Rev. Lett. 118, 046401 (2017)]PRLTAO0031-900710.1103/PhysRevLett.118.046401 revealed that the combined presence of a cubic band structure and external fields breaks all antiunitary symmetries. The nearest-neighbor spacing distribution of magnetoexcitons can exhibit Poissonian statistics, the statistics of a Gaussian orthogonal ensemble (GOE), or a Gaussian unitary ensemble (GUE) depending on the system parameters. Hence, magnetoexcitons are an ideal system to investigate the transitions between these statistics. Here we investigate the transitions between GOE and GUE statistics and between Poissonian and GUE statistics by changing the angle of the magnetic field with respect to the crystal lattice and by changing the scaled energy known from the hydrogen atom in external fields. Comparing our results with analytical formulas for these transitions derived with random matrix theory, we obtain a very good agreement and thus confirm the Wigner surmise for the exciton system.

12.
Phys Rev Lett ; 118(4): 046401, 2017 Jan 27.
Article in English | MEDLINE | ID: mdl-28186819

ABSTRACT

We show analytically and numerically that the application of an external magnetic field to highly excited Rydberg excitons breaks all antiunitary symmetries in the system. Only by considering the complete valence band structure of a direct-band-gap cubic semiconductor, the Hamiltonian of excitons leads to the statistics of a Gaussian unitary ensemble without the need for interactions with other quasiparticles like phonons. Hence, we give theoretical evidence for a spatially homogeneous system breaking all antiunitary symmetries.

13.
Phys Rev E ; 96(5-1): 052217, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29347683

ABSTRACT

Until now only for specific crossovers between Poissonian statistics (P), the statistics of a Gaussian orthogonal ensemble (GOE), or the statistics of a Gaussian unitary ensemble (GUE) have analytical formulas for the level spacing distribution function been derived within random matrix theory. We investigate arbitrary crossovers in the triangle between all three statistics. To this aim we propose an according formula for the level spacing distribution function depending on two parameters. Comparing the behavior of our formula for the special cases of P→GUE, P→GOE, and GOE→GUE with the results from random matrix theory, we prove that these crossovers are described reasonably. Recent investigations by F. Schweiner et al. [Phys. Rev. E 95, 062205 (2017)2470-004510.1103/PhysRevE.95.062205] have shown that the Hamiltonian of magnetoexcitons in cubic semiconductors can exhibit all three statistics in dependence on the system parameters. Evaluating the numerical results for magnetoexcitons in dependence on the excitation energy and on a parameter connected with the cubic valence band structure and comparing the results with the formula proposed allows us to distinguish between regular and chaotic behavior as well as between existent or broken antiunitary symmetries. Increasing one of the two parameters, transitions between different crossovers, e.g., from the P→GOE to the P→GUE crossover, are observed and discussed.

14.
Article in English | MEDLINE | ID: mdl-25679690

ABSTRACT

When superimposing the potentials of external fields on the Coulomb potential of the hydrogen atom, a saddle point (called the Stark saddle point) appears. For energies slightly above the saddle point energy, one can find classical orbits that are located in the vicinity of this point. We follow those so-called quasi-Penning orbits to high energies and field strengths, observing structural changes and uncovering their bifurcation behavior. By plotting the stability behavior of those orbits against energy and field strength, the appearance of a stability apex is reported. A cusp bifurcation, located in the vicinity of the apex, will be investigated in detail. In this cusp bifurcation, another orbit of similar shape is found. This orbit becomes completely stable in the observed region of positive energy, i.e., in a region of parameter space, where the Kepler-like orbits located around the nucleus are already unstable. By quantum mechanically exact calculations, we prove the existence of signatures in quantum spectra belonging to those orbits. Husimi distributions are used to compare quantum-Poincaré sections with the extension of the classical torus structure around the orbits. Since periodic orbit theory predicts that each classical periodic orbit contributes an oscillating term to photoabsorption spectra, we finally give an estimation for future experiments, which could verify the existence of the stable orbits.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(4 Pt 2): 046201, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21230359

ABSTRACT

The fractal Weyl law connects the asymptotic level number with the fractal dimension of the chaotic repeller. We provide the first test for the fractal Weyl law for a three-dimensional open scattering system. For the four-sphere billiard, we investigate the chaotic repeller and discuss the semiclassical quantization of the system by the method of cycle expansion with symmetry decomposition. We test the fractal Weyl law for various symmetry subspaces and sphere-to-sphere separations.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(6 Pt 2): 066207, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21230723

ABSTRACT

The existence of periodic orbit bunches is proven for the diamagnetic Kepler problem. Members of each bunch are reconnected differently at self-encounters in phase space but have nearly equal classical action and stability parameters. Orbits can be grouped already on the level of the symbolic dynamics by application of appropriate reconnection rules to the symbolic code in the ternary alphabet. The periodic orbit bunches can significantly improve the efficiency of semiclassical quantization methods for classically chaotic systems, which suffer from the exponential proliferation of orbits. For the diamagnetic hydrogen atom the use of one or few representatives of a periodic orbit bunch in Gutzwiller's trace formula allows for the computation of semiclassical spectra with a classical data set reduced by up to a factor of 20.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(3 Pt 2): 036205, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18517483

ABSTRACT

We demonstrate that the harmonic inversion technique is a powerful tool to analyze the spectral properties of optical microcavities. As an interesting example we study the statistical properties of complex frequencies of the fully chaotic microstadium. We show that the conjectured fractal Weyl law for open chaotic systems [Lu, Phys. Rev. Lett. 91, 154101 (2003)] is valid for dielectric microcavities only if the concept of the chaotic repeller is extended to a multifractal by incorporating Fresnel's laws.

18.
J Chem Phys ; 128(4): 044116, 2008 Jan 28.
Article in English | MEDLINE | ID: mdl-18247939

ABSTRACT

The dynamics of quantum systems can be approximated by the time propagation of Gaussian wave packets. Applying a time dependent variational principle, the time evolution of the parameters of the coupled Gaussian wave packets can be calculated from a set of ordinary differential equations. Unfortunately, the set of equations is ill behaved in most practical applications, depending on the number of propagated Gaussian wave packets, and methods for regularization are needed. We present a general method for regularization based on applying adequate nonholonomic inequality constraints to the evolution of the parameters, keeping the equations of motion well behaved. The power of the method is demonstrated for a nonintegrable system with two degrees of freedom.

19.
Phys Rev Lett ; 99(17): 173003, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17995326

ABSTRACT

We report the existence of exceptional points for the hydrogen atom in crossed magnetic and electric fields in numerical calculations. The resonances of the system are investigated and it is shown how exceptional points can be found by exploiting characteristic properties of the degeneracies, which are branch point singularities. A possibility for the observation of exceptional points in an experiment with atoms is proposed.

20.
Phys Rev Lett ; 97(10): 104101, 2006 Sep 08.
Article in English | MEDLINE | ID: mdl-17025820

ABSTRACT

We establish a hierarchical ordering of periodic orbits in a strongly coupled multidimensional Hamiltonian system. Phase space structures can be reconstructed quantitatively from the knowledge of periodic orbits alone. We illustrate our findings for the hydrogen atom in crossed electric and magnetic fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...