Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Access Microbiol ; 6(2)2024.
Article in English | MEDLINE | ID: mdl-38482364

ABSTRACT

The menace of antimicrobial resistance affecting public health is rising globally. Many pathogenic bacteria use mechanisms such as mutations and biofilm formation, significantly reducing the efficacy of antimicrobial agents. In this cross-sectional study, we aimed to determine the prevalence of selected extended-spectrum ß-lactamase (ESßL) genes and analyse the biofilm formation abilities of the isolated bacteria causing urinary tract infection among adult patients seeking Medicare at Kiambu Level 5 Hospital, Kenya. The double-disc synergy test was used for phenotypic identification of ESßL-producing isolates, while microtitre plate assays with some modifications were used for the biofilm formation test. Ten isolates were bioassayed for ESßL genes out of 57 bacterial isolates obtained from urine samples. This study found the bla TEM genes to be the most prevalent ESßL type [10/10 (100 %)], followed by blaOXA and blaSHV genes at 4/10 (40 %) and 3/10 (30 %), respectively. In addition, co-carriage of blaTEM and blaSHV was 50 % lower than that of blaTEM+bla OXA genes at 66.7 % among Escherichia coli isolates studied. Biofilm formation was positive in 36/57 (63.2 %) of the isolates tested, with most being Gram-negative [25/36 (69.4 %)]. Escherichia coli [15/36 (41.7 %)], Klebsiella species [7/36 (19.4 %)] and Staphylococcus aureus [7/36 (19.4 %)] were the dominant biofilm formers. However, there was no significant difference in biofilm formation among all tested isolates, with all isolates recording P-values >0.05. In light of these findings, biofilm formation potential coupled with antimicrobial resistance genes in urinary tract infection isolates may lead to difficult-to-treat infections.

2.
JAC Antimicrob Resist ; 6(1): dlae019, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38372000

ABSTRACT

Background: In low- and middle-income countries, antibiotics are often prescribed for patients with symptoms of urinary tract infections (UTIs) without microbiological confirmation. Inappropriate antibiotic use can contribute to antimicrobial resistance (AMR) and the selection of MDR bacteria. Data on antibiotic susceptibility of cultured bacteria are important in drafting empirical treatment guidelines and monitoring resistance trends, which can prevent the spread of AMR. In East Africa, antibiotic susceptibility data are sparse. To fill the gap, this study reports common microorganisms and their susceptibility patterns isolated from patients with UTI-like symptoms in Kenya, Tanzania and Uganda. Within each country, patients were recruited from three sites that were sociodemographically distinct and representative of different populations. Methods: UTI was defined by the presence of >104 cfu/mL of one or two uropathogens in mid-stream urine samples. Identification of microorganisms was done using biochemical methods. Antimicrobial susceptibility testing was performed by the Kirby-Bauer disc diffusion assay. MDR bacteria were defined as isolates resistant to at least one agent in three or more classes of antimicrobial agents. Results: Microbiologically confirmed UTI was observed in 2653 (35.0%) of the 7583 patients studied. The predominant bacteria were Escherichia coli (37.0%), Staphylococcus spp. (26.3%), Klebsiella spp. (5.8%) and Enterococcus spp. (5.5%). E. coli contributed 982 of the isolates, with an MDR proportion of 52.2%. Staphylococcus spp. contributed 697 of the isolates, with an MDR rate of 60.3%. The overall proportion of MDR bacteria (n = 1153) was 50.9%. Conclusions: MDR bacteria are common causes of UTI in patients attending healthcare centres in East African countries, which emphasizes the need for investment in laboratory culture capacity and diagnostic algorithms to improve accuracy of diagnosis that will lead to appropriate antibiotic use to prevent and control AMR.

3.
BMC Infect Dis ; 24(1): 237, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388369

ABSTRACT

BACKGROUND: In Kenya, diarrhoeal disease is the third leading cause of child mortality after malaria and pneumonia, accounting for nearly 100 deaths daily. We conducted a cross-sectional study in Mukuru informal settlements to determine the bacteria associated with diarrhea and their ASTs to provide data essential for implementing appropriate intervention measures. METHODS: Diarrheagenic children (≤ 5 years) were purposively recruited from outpatient clinics of Municipal City Council, Mukuru kwa Reuben, Medical Missionaries of Mary, and Mama Lucy Kibaki Hospital, Nairobi. A total of 219 stool samples were collected between May 2021 and August 2021. Stool culture was done on MacConkey and Salmonella Shigella agar, while the recovered bacteria were identified using VITEK®2GNID and polymerase chain reaction (PCR) used for E. coli pathotyping. Antibiotic Susceptibility Testing was done using VITEK®2AST-GN83. RESULTS: At least one bacterial organism was recovered from each of the 213 (97%) participants, with 115 (56%) participants having only one bacterial type isolated, 90 (43%) with two types of bacteria, and 2 (1%) with three types of bacteria recovered. The most predominant bacteria recovered was 85% (93/109) non-pathogenic E.coli and 15% (16/109)of pathogenic E.coli, with 2 (1%) were Enterohemorrhagic E.coli (EHEC), 6 (3%) were Enteroaggregative E.coli (EAEC), and 8 (4%) were Enteropathogenic E.coli (EPEC). Other potentially pathogenic bacteria included Enterobacter sp (27.8%), Klebsiella sp 33(11%), and Citrobacter sp 15(4.7%). Pathogenic isolates such as Salmonella 7 (2%), Proteus mirabilis 16 (6%), Providencia alcalifaciens 1 (0.3%), and Shigella 16 (4.7%) were detected. Isolates such as Pantoea spp 2(0.67%), Raoultella planticola 1(0.33%), and Kluyvera 6(2%) rarely reported but implicated with opportunistic diarrhoeal disease were also recovered. Ampicillin, cefazolin, and sulfamethoxazole-trimethoprim were the least effective antimicrobials at 64%, 57%, and 55% resistance, respectively, while meropenem (99%), amikacin (99%), tazobactam piperacillin (96%), and cefepime (95%) were the most effective. Overall, 33(21%) of all enterics recovered were multidrug-resistant. CONCLUSION: The study documented different bacteria potentially implicated with childhood diarrhea that were not limited to E. coli, Shigella, and Salmonella, as previously observed in Kenya. The strains were resistant to the commonly used antibiotics, thus narrowing the treatment options for diarrheal disease.


Subject(s)
Anti-Infective Agents , Enteropathogenic Escherichia coli , Shigella , Child , Humans , Child, Preschool , Kenya/epidemiology , Cross-Sectional Studies , Diarrhea/drug therapy , Diarrhea/epidemiology , Diarrhea/microbiology , Anti-Infective Agents/pharmacology , Bacteria/genetics , Salmonella
4.
Access Microbiol ; 5(6)2023.
Article in English | MEDLINE | ID: mdl-37424559

ABSTRACT

Introduction: Culture is the gold-standard diagnosis for urinary tract infections (UTIs). However, most hospitals in low-resource countries lack adequately equipped laboratories and relevant expertise to perform culture and, therefore, rely heavily on dipstick tests for UTI diagnosis. Research gap: In many Kenyan hospitals, routine evaluations are rarely done to assess the accuracy of popular screening tests such as the dipstick test. As such, there is a substantial risk of misdiagnosis emanating from inaccuracy in proxy screening tests. This may result in misuse, under-use or over-use of antimicrobials. Aim: The present study aimed to assess the accuracy of the urine dipstick test as a proxy for the diagnosis of UTIs in selected Kenyan hospitals. Methods: A hospital-based cross-sectional method was used. The utility of dipstick in the diagnosis of UTIs was assessed using midstream urine against culture as the gold standard. Results: The dipstick test predicted 1416 positive UTIs, but only 1027 were confirmed positive by culture, translating to a prevalence of 54.1 %. The sensitivity of the dipstick test was better when leucocytes and nitrite tests were combined (63.1 %) than when the two tests were separate (62.6 and 50.7 %, respectively). Similarly, the two tests combined had a better positive predictive value (87.0 %) than either test alone. The nitrite test had the best specificity (89.8 %) and negative predictive value (97.4 %) than leucocytes esterase (L.E) or both tests combined. In addition, sensitivity in samples from inpatients (69.2 %) was higher than from outpatients (62.7 %). Furthermore, the dipstick test had a better sensitivity and positive predictive value among female (66.0 and 88.6 %) than male patients (44.3 and 73.9 %). Among the various patient age groups, the dipstick test's sensitivity and positive predictive value were exceptionally high in patients ≥75 years old (87.5 and 93.3 %). Conclusion: Discrepancies in prevalence from the urine dipstick test and culture, the gold standard, indicate dipstick test inadequacy for accurate UTI diagnosis. The finding also demonstrates the need for urine culture for accurate UTI diagnosis. However, considering it is not always possible to perform a culture, especially in low-resource settings, future studies are needed to combine specific UTI symptoms and dipstick results to assess possible increases in the test's sensitivity. There is also a need to develop readily available and affordable algorithms that can detect UTIs where culture is not available.

5.
Microsc Microanal ; 29(4): 1523-1530, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37488818

ABSTRACT

Culture of shell-free and windowed eggs for drug testing and other experiments has been perfected for smaller eggs such as those of chickens, where the developing blood vessels of the chorioallantoic membrane (CAM) become accessible for manipulative studies. However, due to the thickness and hardness of the ostrich egg shell, such techniques are not applicable. Using a tork craft mini rotary and a drill bit, we established windowed egg, in-shell-membrane windowed egg, and in-shell-membrane shell-free methods in the ostrich egg, depending on whether the shell membranes were retained or not. Concomitant study of the developing CAM revealed that at embryonic day 16 (E16), the three layers of the CAM were clearly delineated and at E25, the chorionic capillaries had fused with the epithelium while the CAM at E37 had reached maturity and the chorion and the allantois were both 3-4 times thicker and villous cavity (VC) and capillary-covering cells were well delineated. Both intussusceptive and sprouting angiogenesis were found to be the predominant modes of vascular growth in the ostrich CAM. Development and maturation of the ostrich CAM are similar to those of the well-studied chicken egg, albeit its incubation time being twice in duration.


Subject(s)
Chorioallantoic Membrane , Struthioniformes , Animals , Chorioallantoic Membrane/blood supply , Chickens , Allantois/blood supply , Chorion/blood supply
6.
Biol Rev Camb Philos Soc ; 98(6): 2152-2187, 2023 12.
Article in English | MEDLINE | ID: mdl-37489059

ABSTRACT

In commercial poultry farming, respiratory diseases cause high morbidities and mortalities, begetting colossal economic losses. Without empirical evidence, early observations led to the supposition that birds in general, and poultry in particular, have weak innate and adaptive pulmonary defences and are therefore highly susceptible to injury by pathogens. Recent findings have, however, shown that birds possess notably efficient pulmonary defences that include: (i) a structurally complex three-tiered airway arrangement with aerodynamically intricate air-flow dynamics that provide efficient filtration of inhaled air; (ii) a specialised airway mucosal lining that comprises air-filtering (ciliated) cells and various resident phagocytic cells such as surface and tissue macrophages, dendritic cells and lymphocytes; (iii) an exceptionally efficient mucociliary escalator system that efficiently removes trapped foreign agents; (iv) phagocytotic atrial and infundibular epithelial cells; (v) phagocytically competent surface macrophages that destroy pathogens and injurious particulates; (vi) pulmonary intravascular macrophages that protect the lung from the vascular side; and (vii) proficiently phagocytic pulmonary extravasated erythrocytes. Additionally, the avian respiratory system rapidly translocates phagocytic cells onto the respiratory surface, ostensibly from the subepithelial space and the circulatory system: the mobilised cells complement the surface macrophages in destroying foreign agents. Further studies are needed to determine whether the posited weak defence of the avian respiratory system is a global avian feature or is exclusive to poultry. This review argues that any inadequacies of pulmonary defences in poultry may have derived from exacting genetic manipulation(s) for traits such as rapid weight gain from efficient conversion of food into meat and eggs and the harsh environmental conditions and severe husbandry operations in modern poultry farming. To reduce pulmonary diseases and their severity, greater effort must be directed at establishment of optimal poultry housing conditions and use of more humane husbandry practices.


Subject(s)
Birds , Poultry , Animals , Lung , Phagocytes , Erythrocytes
7.
PLoS One ; 18(5): e0277279, 2023.
Article in English | MEDLINE | ID: mdl-37235625

ABSTRACT

BACKGROUND: Evidence-based empirical antibiotic prescribing requires knowledge of local antimicrobial resistance patterns. The spectrum of pathogens and their susceptibility strongly influences guidelines for empirical therapies for urinary tract infections (UTI) management. OBJECTIVE: This study aimed to determine the prevalence of UTI causative bacteria and their corresponding antibiotic resistance profiles in three counties of Kenya. Such data could be used to determine the optimal empirical therapy. METHODS: In this cross-sectional study, urine samples were collected from patients who presented with symptoms suggestive of UTI in the following healthcare facilities; Kenyatta National Hospital, Kiambu Hospital, Mbagathi, Makueni, Nanyuki, Centre for Microbiology Research, and Mukuru Health Centres. Urine cultures were done on Cystine Lactose Electrolyte Deficient (CLED) to isolate UTI bacterial etiologies, while antibiotic sensitivity testing was done using the Kirby-Bauer disk diffusion using CLSI guidelines and interpretive criteria. RESULTS: A total of 1,027(54%) uropathogens were isolated from the urine samples of 1898 participants. Staphylococcus spp. and Escherichia coli were the main uropathogens at 37.6% and 30.9%, respectively. The percentage resistance to commonly used drugs for the treatment of UTI were as follows: trimethoprim (64%), sulfamethoxazole (57%), nalidixic acid(57%), ciprofloxacin (27%), amoxicillin-clavulanic acid (5%), and nitrofurantoin (9%) and cefixime (9%). Resistance rates to broad-spectrum antimicrobials, such as ceftazidime, gentamicin, and ceftriaxone, were 15%, 14%, and 11%, respectively. Additionally, the proportion of Multidrug-resistant (MDR) bacteria was 66%. CONCLUSION: High resistance rates toward fluoroquinolones, sulfamethoxazole, and trimethoprim were reported. These antibiotics are commonly used drugs as they are inexpensive and readily available. Based on these findings, more robust standardised surveillance is needed to confirm the patterns observed while recognising the potential impact of sampling biases on observed resistance rates.


Subject(s)
Anti-Bacterial Agents , Urinary Tract Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Kenya/epidemiology , Cross-Sectional Studies , Drug Resistance, Bacterial , Urinary Tract Infections/drug therapy , Urinary Tract Infections/epidemiology , Urinary Tract Infections/microbiology , Bacteria , Trimethoprim/therapeutic use , Escherichia coli , Sulfamethoxazole , Health Facilities , Microbial Sensitivity Tests
8.
Antibiotics (Basel) ; 12(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36978480

ABSTRACT

There is increasing proof of bacterial resistance to antibiotics all over the world, and this puts the effectiveness of antimicrobials that have been essential in decreasing disease mortality and morbidity at stake. The WHO has labeled some classes of antimicrobials as vitally important to human health. Bacteria from animals are thought to be reservoirs of resistance genes that can be transferred to humans through the food chain. This study aimed to identify the resistance patterns of bacteria from pork and poultry meat samples purchased from leading retail outlets in Kenya. Of the 393 samples collected, 98.4% of pork and 96.6% of poultry were contaminated with high levels of bacteria. Among the 611 bacterial isolates recovered, 38.5% were multi-drug resistant. This resistance was noted for critically essential antimicrobials (according to the WHO) such as rifampicin (96%), ampicillin (35%), cefotaxime (9%), cefepime (6%), and ciprofloxacin (6%). Moreover, there was high resistance to key antimicrobials for veterinary medicine such as tetracycline (39%), sulfamethoxazole (33%), and trimethoprim (30%). It is essential to spread awareness about the judicious use of antibiotics and take preventive measures to reduce disease burden.

10.
Microbiol Insights ; 15: 11786361211063619, 2022.
Article in English | MEDLINE | ID: mdl-35603101

ABSTRACT

Background: The emergence and spread of Extended-spectrum ß-lactamases (ESBLs) in Enterobacteriaceae through the plasmid-mediated exchange have become a major threat to public health by complicating the treatment of severe infections in both animals and humans. Therefore, the current study focused on evaluating the manifestation of ESBLs production from the fecal isolates of E. coli, Shigella spp, Salmonella spp, and Klebsiella spps in commercial poultry production systems of Kiambu County, Kenya. Materials and methods: Out of 591 isolates identified as E. coli, Shigella spp, Salmonella spp, and Klebsiella spps from 437 fecal samples, only 78 were phenotypically suggestive to be ESBL producers. The possible ESBL producers were screened for the presence of blaTEM, blaCTX-M, blaOXA, and blaSHV using the PCR technique. These isolates were also screened for carriage of the QnrS gene that confers resistance to the fluoroquinolone class of drugs. Results: The most detected ESBL gene from the isolates was blaOXA (n = 20; 26%), followed by blaTEM (n = 16, 21%), with the majority of them detected in E. coli. The blaCTX-M was identified in all the 4 enteric's bacteria-type isolates tested. Three E. coli and Salmonella spp respectively were found to harbor all the 5 antimicrobial resistance (AMR) gene types. The blaTEM, blaOXA, blaSHV, and QnrS genes were not detected from Klebsiella and Shigella spps. Additionally, most of the AMR gene co-carriage was detected in both E. coli and Salmonella spps as follows blaTEM + blaOXA (n = 4); blaTEM + QnrS (n = 3); blaTEM + blaOXA + QnrS (n = 3), concurrently. Conclusion: Our findings highlight the significance of commercial poultry production in disseminating transferable antibiotic resistance genes that act as potential sources of extensive drug resistance in livestock, humans, and the environment, leaving limited therapeutic options in infection management.

11.
Anat Rec (Hoboken) ; 305(11): 3212-3229, 2022 11.
Article in English | MEDLINE | ID: mdl-35142056

ABSTRACT

Acetylcholine (Ach) represents the old neurotransmitter in central and peripheral nervous system. Its muscarinic and nicotinic receptors (mAChRs and nAChRs) constitute an independent cholinergic system that is found in immune cells and play a key role in the regulation of the immune function and cytokine production. Gas exchanging surfaces of the gills and air-breathing organs (ABOs) of the sharptooth catfish Clarias gariepinus were investigated using ultrastructural and confocal immunofluorescence techniques. This study was predominantly focused on the structure of the immune cell types, the expression of their neurotransmitters, including the antimicrobial peptide piscidin 1, and the functional significance of respiratory gas exchange epithelia. A network of immune cells (monocytes, eosinophils, and mast cells) was observed in the gill and the ABO epithelia. Eosinophils containing 5-hydroxytryptamine (5-HT) immunoreactivity were seen in close association with mast cells expressing acetylcholine (Ach), 5-HT, neuronal nitric oxide synthase, and piscidin 1. A rich and dense cholinergic innervation dispersing across the islet capillaries of the gas exchange barrier and the localization of Ach in the squamous pavement cells covering the capillaries were evidenced byVAChT antibodies. We report for the first time that piscidin 1 (Pis 1)-positive mast cells interact with Pis 1-positive nerves found in the epithelia of the respiratory organs. Pis 1 immunoreactivity was also observed in the covering respiratory epithelium of the ABOs and associated with a role in local mucosal immune defense. The above results anticipate future studies on the neuro-immune interactions at mucosal barrier surfaces, like the gill and the skin of fish, areas densely populated by different immune cells and sensory nerves that constantly sense and adapt to tissue-specific environmental challenges.


Subject(s)
Catfishes , Receptors, Nicotinic , Acetylcholine/metabolism , Animals , Catfishes/metabolism , Cholinergic Agents/metabolism , Cytokines/metabolism , Neurotransmitter Agents/metabolism , Nitric Oxide Synthase Type I/metabolism , Receptors, Nicotinic/metabolism , Serotonin/metabolism
12.
Access Microbiol ; 3(6): 000236, 2021.
Article in English | MEDLINE | ID: mdl-34423251

ABSTRACT

OBJECTIVE: This cross-sectional study conducted in Kibera, Kenya, sought to gain insights on relative microbial contamination levels of popular unprocessed food types, determine antimicrobial resistance (AMR) burden and the carriage of integrons that are essential elements for spreading antimicrobial resistance genes (ARG). Foods analysed consisted of cooked vegetables (kale, cabbage, and nightshades), boiled cereal foods (beans, rice, and Githeri, which is a mixture of beans and maize), meat, Omena fish (fried silver cyprinids), and Ugali (a product of simmered maize flour in boiled water). RESULTS: The analysis detected contamination levels exceeding 2×104 c.f.u. ml-1 in 106 (38 %) of the 281 ready-to-eat foods analysed. The majority of food types had microbial contaminations of between 4.0×104 and 2.3×106 c.f.u. ml-1. Kale was the most contaminated with a mean of 2.3×106 c.f.u. ml-1, while Omena was the least contaminated with 4.0×104 c.f.u. ml-1. Foods sold close to open sewage and refuse sites were more contaminated than those sold in relatively 'cleaner' settings (P <0.0001, O.R 0.1162, C.I 0.1162-0.120). A total of 405 bacterial isolates were recovered and included; Klebsiella spp 116 (29 %), Escherichia coli 104 (26 %), Enterobacter agglomerans 88 (22 %), Proteus mirabilis 30 (7 %), Salmonella spp 28 (7 %), Citrobacter freundii 27 (7 %) and Serratia marcescens 12 (3 %). Imipenem (IPM, 100 %) was the most effective antimicrobial agent, followed by cefepime (98 %). Ampicillin (AMP, 33 %), trimethoprim (TMP, 27 %), and sulfamethoxazole (SMX, 23 %) on the other hand, were the least effective antimicrobials. The analysis also found ten isolates (2 %) that had co-resistance to third-generation cephalosporins, fluoroquinolone (CIP), quinolones (NAL) and aminoglycosides (GEN); hereby we refer to this phenotype as the ßFQA. The prevalence of multidrug-resistant (MDR) strains was 23 % (93), while that of extended-spectrum ß-lactamases (ESBL) producing strains was 4 % (17). The bla TEM was the most prevalent (55 %) ß-lactamase (bla) gene among the screened 93 MDR-strains. Carriage of class one integrons (intI1) was more common (23 %) than intl2 (3 %) among these MDR-strains. Bacterial diversity analysis using the GTG5-PCR found no significant clusters for analysed E. coli and K. pneumoniae, suggesting recovered isolates were genetically diverse and not due to non-clonal expansion. The findings of this study are an indication that contaminated foods can be a reservoir for enteric pathogens and a source of AMR strains.

13.
Open Biol ; 10(7): 190249, 2020 07.
Article in English | MEDLINE | ID: mdl-32634372

ABSTRACT

Fractal geometry (FG) is a branch of mathematics that instructively characterizes structural complexity. Branched structures are ubiquitous in both the physical and the biological realms. Fractility has therefore been termed nature's design. The fractal properties of the bronchial (airway) system, the pulmonary artery and the pulmonary vein of the human lung generates large respiratory surface area that is crammed in the lung. Also, it permits the inhaled air to intimately approximate the pulmonary capillary blood across a very thin blood-gas barrier through which gas exchange to occur by diffusion. Here, the bronchial (airway) and vascular systems were simultaneously cast with latex rubber. After corrosion, the bronchial and vascular system casts were physically separated and cleared to expose the branches. The morphogenetic (Weibel's) ordering method was used to categorize the branches on which the diameters and the lengths, as well as the angles of bifurcation, were measured. The fractal dimensions (DF) were determined by plotting the total branch measurements against the mean branch diameters on double logarithmic coordinates (axes). The diameter-determined DF values were 2.714 for the bronchial system, 2.882 for the pulmonary artery and 2.334 for the pulmonary vein while the respective values from lengths were 3.098, 3.916 and 4.041. The diameters yielded DF values that were consistent with the properties of fractal structures (i.e. self-similarity and space-filling). The data obtained here compellingly suggest that the design of the bronchial system, the pulmonary artery and the pulmonary vein of the human lung functionally comply with the Hess-Murray law or 'the principle of minimum work'.


Subject(s)
Bronchi/physiology , Fractals , Lung/physiopathology , Respiration , Bronchi/blood supply , Humans , Lung/blood supply , Lung/physiology , Mathematics , Pulmonary Artery/physiology , Pulmonary Veins/physiology , Rubber/chemistry , Rubber/therapeutic use
14.
Sci Rep ; 10(1): 5244, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32251351

ABSTRACT

Lungs of the rodent species, the African giant pouched rat (Cricetomys gambianus) and the Nigerian mole rat (Cryptomys foxi) were investigated. Significant morphometric differences exist between the two species. The volume of the lung per unit body mass was 2.7 times larger; the respiratory surface area 3.4 times greater; the volume of the pulmonary capillary blood 2 times more; the harmonic mean thickness of the blood-gas (tissue) barrier (τht) ~29% thinner and; the total pulmonary morphometric diffusing capacity (DLo2) for O2 2.3 times more in C. foxi. C. gambianus occupies open burrows that are ventilated with air while C. foxi lives in closed burrows. The less morphometrically specialized lungs of C. gambianus may be attributed to its much larger body mass (~6 times more) and possibly lower metabolic rate and its semifossorial life whereas the 'superior' lungs of C. foxi may largely be ascribed to the subterranean hypoxic and hypercapnic environment it occupies. Compared to other rodents species that have been investigated hitherto, the τht was mostly smaller in the lungs of the subterranean species and C. foxi has the highest mass-specific DLo2. The fossorial- and the subterranean rodents have acquired various pulmonary structural specializations that relate to habitats occupied.


Subject(s)
Lung/physiology , Mole Rats/physiology , Muridae/physiology , Animals , Ecosystem , Lung/anatomy & histology , Mole Rats/anatomy & histology , Muridae/anatomy & histology
15.
Parasite ; 26: 76, 2019.
Article in English | MEDLINE | ID: mdl-31859621

ABSTRACT

A new species of Gyrodactylus von Nordmann, 1832 is described from the gills of Alcolapia grahami, a tilapian fish endemic to Lake Magadi. This alkaline soda lake in the Rift Valley in Kenya is an extreme environment with pH as high as 11, temperatures up to 42 °C, and diurnal fluctuation between hyperoxia and virtual anoxia. Nevertheless, gyrodactylid monogeneans able to survive these hostile conditions were detected from the gills the Magadi tilapia. The worms were studied using light microscopy, isolated sclerites observed using scanning electron microscopy, and molecular techniques used to genetically characterize the specimens. The gyrodactylid was described as Gyrodactylus magadiensis n. sp. and could be distinguished from other Gyrodactylus species infecting African cichlid fish based on the comparatively long and narrow hamuli, a ventral bar with small rounded anterolateral processes and a tongue-shaped posterior membrane, and marginal hooks with slender sickles which are angled forward, a trapezoid to square toe, rounded heel, a long bridge prior to reaching marginal sickle shaft, and a long lateral edge of the toe. The species is also distinct from all other Gyrodactylus taxa based on the ITS region of rDNA (ITS1-5.8s-ITS2), strongly supporting the designation of a new species. These findings represent the second record of Gyrodactylus from Kenya, with the description of G. magadiensis bringing the total number of Gyrodactylus species described from African cichlids to 18.


TITLE: Gyrodactylus magadiensis n. sp. (Monogenea, Gyrodactylidae), parasite des branchies d'Alcolapia grahami (Perciformes, Cichlidae), un poisson habitant l'environnement extrême du lac Magadi au Kenya. ABSTRACT: Une nouvelle espèce de Gyrodactylus von Nordmann, 1832 est décrite à partir des branchies d'Alcolapia grahami, un tilapia endémique du lac Magadi. Ce lac de soude alcaline dans la vallée du Rift au Kenya est un environnement extrême avec un pH allant jusqu'à 11, des températures allant jusqu'à 42 °C et des fluctuations diurnes entre l'hyperoxie et l'anoxie virtuelle. Néanmoins, des Monogènes Gyrodactylidae capables de survivre dans ces conditions hostiles ont été détectés sur les branchies du tilapia de Magadi. Les vers ont été étudiés par microscopie optique, les sclérites isolés ont été observés au microscope électronique à balayage et des techniques moléculaires ont été utilisées pour caractériser génétiquement les spécimens. Le gyrodactylidé est décrit comme étant Gyrodactylus magadiensis n. sp. et se distingue des autres espèces de Gyrodactylus infectant les cichlidés d'Afrique grâce à ses hamuli relativement longs et étroits, à une barre ventrale avec de petits processus antérolatéraux arrondis et à une membrane postérieure en forme de langue, ainsi qu'à des crochets marginaux à faucilles minces inclinées vers l'avant, un trapèze à bout carré, un talon arrondi, un long pont avant d'atteindre la faucille marginale et un long bord latéral de l'extrémité. L'espèce est également distincte de tous les autres taxons de Gyrodactylus sur la base sur la région ITS de l'ADNr (ITS1­5.8s­ITS2), ce qui soutient fortement la désignation d'une nouvelle espèce. Ces découvertes représentent la seconde mention d'un Gyrodactylus au Kenya, et la description de G. magadiensis amène à 18 le nombre total d'espèces de Gyrodactylus décrites parmi les cichlidés d'Afrique.


Subject(s)
Cichlids/parasitology , Fish Diseases/parasitology , Gills/parasitology , Lakes/parasitology , Trematoda/ultrastructure , Trematode Infections/veterinary , Animals , DNA, Ribosomal Spacer/genetics , Extreme Environments , Kenya , Male , Phylogeny , Species Specificity , Trematoda/classification
16.
Conserv Physiol ; 7(1): coz060, 2019.
Article in English | MEDLINE | ID: mdl-31687141

ABSTRACT

Lake Magadi, Kenya, is one of the most extreme aquatic environments on Earth (pH~10, anoxic to hyperoxic, high temperatures). Recently, increased water demand and siltation have threatened the viable hot springs near the margins of the lake where Alcolapia grahami, the only fish surviving in the lake, live. These Lake Magadi tilapia largely depend on nitrogen-rich cyanobacteria for food and are 100% ureotelic. Their exceptionally high aerobic metabolic rate, together with their emaciated appearance, suggests that they are energy-limited. Therefore, we hypothesized that during food deprivation, Magadi tilapia would economize their energy expenditure and reduce metabolic rate, aerobic performance and urea-N excretion. Surprisingly, during a 5-day fasting period, routine metabolic rates increased and swimming performance (critical swimming speed) was not affected. Urea-N excretion remained stable despite the lack of their N-rich food source. Their nitrogen use switched to endogenous sources as liver and muscle protein levels decreased after a 5-day fast, indicating proteolysis. Additionally, fish relied on carbohydrates with lowered muscle glycogen levels, but there were no signs indicating use of lipid stores. Gene expression of gill and gut urea transporters were transiently reduced as were gill rhesus glycoprotein Rhbg and Rhcg-2. The reduction in gill glutamine synthetase expression concomitant with the reduction in Rh glycoprotein gene expression indicates reduced nitrogen/ammonia metabolism, most likely decreased protein synthesis. Additionally, fish showed reduced plasma total CO2, osmolality and Na+ (but not Cl-) levels, possibly related to reduced drinking rates and metabolic acidosis. Our work shows that Lake Magadi tilapia have the capacity to survive short periods of starvation which could occur when siltation linked to flash floods covers their main food source, but their seemingly hardwired high metabolic rates would compromise long-term survival.

17.
Zoology (Jena) ; 130: 6-18, 2018 10.
Article in English | MEDLINE | ID: mdl-30502840

ABSTRACT

The respiratory organs of the African sharptooth catfish, Clarias gariepinus, were studied to broaden existing understanding of the adaptive stratagems that have evolved for air-breathing in fish. The gills were well-developed and the air-breathing organs (ABOs) comprised labyrinthine organs (LOs), suprabranchial chamber membranes (SBCMs) and gill fans (GFns). Respectively, the gills and the LOs had the highest mass-specific respiratory surface areas of 133.7 and 141.9 mm2 per gram and among the ABOs, with a harmonic mean thickness of the blood-barrier (BGB) of 0.39 µm, the LOs had the thinnest BGB followed by the GFns (0.48 µm) and the SBCMs (0.49 µm): the water-blood barrier of the gills was relatively much thicker (7.93 µm). Vindicating why C. gariepinus is an obligate air-breather, the total mass-specific morphometric (anatomical) diffusing capacity of the ABOs for O2 per unit body weight (W) (Dto2/W) comprised 90.5% of the mean total value for all the respiratory organs. Compared with the East African catfish, Clarias mossambicus, the Dto2/W of the ABOs of C. gariepinus was 5.7 times greater. The difference between the two species of fish may be explained by the physicochemical differences of the aquatic habitats they occupy: the former occupies a seasonal river which dries up during the summer months leaving shallow pools of water in which the O2 concentrations are very low and CO2 very high while the later populates a highly eutrophic dam where the O2 levels greatly fluctuate seasonally.


Subject(s)
Catfishes/anatomy & histology , Respiratory System/anatomy & histology , Animals , Catfishes/physiology , Ecosystem , Gills/anatomy & histology
18.
Proc Natl Acad Sci U S A ; 115(45): 11555-11560, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30348768

ABSTRACT

We describe a specimen of the basal ornithuromorph Archaeorhynchus spathula from the Lower Cretaceous Jiufotang Formation with extensive soft tissue preservation. Although it is the fifth specimen to be described, unlike the others it preserves significant traces of the plumage, revealing a pintail morphology previously unrecognized among Mesozoic birds, but common in extant neornithines. In addition, this specimen preserves the probable remnants of the paired lungs, an identification supported by topographical and macro- and microscopic anatomical observations. The preserved morphology reveals a lung very similar to that of living birds. It indicates that pulmonary specializations such as exceedingly subdivided parenchyma that allow birds to achieve the oxygen acquisition capacity necessary to support powered flight were present in ornithuromorph birds 120 Mya. Among extant air breathing vertebrates, birds have structurally the most complex and functionally the most efficient respiratory system, which facilitates their highly energetically demanding form of locomotion, even in extremely oxygen-poor environments. Archaeorhynchus is commonly resolved as the most basal known ornithuromorph bird, capturing a stage of avian evolution in which skeletal indicators of respiration remain primitive yet the lung microstructure appears modern. This adds to growing evidence that many physiological modifications of soft tissue systems (e.g., digestive system and respiratory system) that characterize living birds and are key to their current success may have preceded the evolution of obvious skeletal adaptations traditionally tracked through the fossil record.


Subject(s)
Birds/anatomy & histology , Fossils/anatomy & histology , Lung/anatomy & histology , Oxygen/physiology , Respiration , Adaptation, Physiological , Animals , Biological Evolution , Birds/classification , Birds/physiology , China , Extinction, Biological , Feathers/anatomy & histology , Feathers/physiology , Flight, Animal/physiology , Fossils/history , History, Ancient , Lung/physiology , Phylogeny
19.
Acta Histochem ; 120(7): 613-622, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30195501

ABSTRACT

The evolution of air-breathing and transition from water to land were pivotal events that greatly determined the ecological diversification, the advances and the successes of animal life. During their relocation onto land, the so-called bimodal breathers were literally caught at the water-air interface. Among such animals are the diverse air-breathing bony fish. Such taxa, however, strictly do not constitute the so-called 'bridging animals', i.e., the inaugural animals that crossed from water to land, nor are they their direct progenitors. The pioneer transitional animals were the Devonian rhipidistian amphibians that possessed a primitive lung which acquired O2 directly from air and discharged CO2 back into the same. By having particular morphological and physiological adaptations for terrestrialness, the modern amphibious- and aquatic air-breathers are heuristic analogues of how and why animals relocated from water to land. It has generally been espoused that lack or dearth of O2 in water, especially in the warm tropical one, was an elemental driver for adoption of air-breathing. There is, however, no direct causal relationship between the evolution of air-breathing and the shift onto land: the move onto land was a direct solution to the existing inimical respiratory conditions in water. This is evinced in the facts that: a) even after attaining capacity of air-breathing, an important preadaptation for life on land, some animals continued living in water while periodically accessing air, b) in the fish species that live in the well-oxygenated waters, e.g., torrential rivers, only few air-breathe and c) air-breathing has still evolved in freshwaters and seawaters, where levels of dissolved O2 are sufficiently high. Here, the structure and function of the respiratory organs of the air-breathing fish are succinctly outlined. Two African catfishes, Clarias mossambicus and C. gariepinus are highlighted.


Subject(s)
Catfishes/physiology , Gills/physiology , Air , Animals , Catfishes/classification , Microscopy, Electron, Transmission , Respiration
20.
J Clin Med ; 7(3)2018 Feb 26.
Article in English | MEDLINE | ID: mdl-29495354

ABSTRACT

Children with autism spectrum disorder (ASD) are at risk for obesity, commonly have sleep disorders, and exhibit stereotypic behaviors that disrupt their learning. Vigorous levels of exercise have been shown to ameliorate these issues in children with ASD, but little research exists to provide techniques for motivating children with ASD to engage in exercise. The present study examined the effect of music on exercise intensity in a group of 13 elementary school students with ASD. Data were collected across six days during structured (e.g., verbal and physical prompts) and unstructured (e.g., minimal prompting) exercise periods. During these exercise periods, three music conditions were randomized: no music, slow-tempo music, and fast-tempo music. Exercise intensity, measured in Metabolic Equivalent of Tasks by triaxial accelerometers, was greatest during the structured exercise periods and during the slow music condition. Student characteristics moderated the impact of music condition on exercise intensity, such that students with high levels of adaptive behavior or lower levels of maladaptive behavior displayed greater exercise intensity during the fast music condition.

SELECTION OF CITATIONS
SEARCH DETAIL
...