Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Int J Parasitol ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38806068

ABSTRACT

Xenobiotic biotransformation is an important modulator of anthelmintic drug potency and a potential mechanism of anthelmintic resistance. Both the free-living nematode Caenorhabditis elegans and the ruminant parasite Haemonchus contortus biotransform benzimidazole drugs by glucose conjugation, likely catalysed by UDP-glycosyltransferase (UGT) enzymes. To identify C. elegans genes involved in benzimidazole drug detoxification, we first used a comparative phylogenetic analysis of UGTs from humans, C. elegans and H. contortus, combined with available RNAseq datasets to identify which of the 63 C. elegans ugt genes are most likely to be involved in benzimidazole drug biotransformation. RNA interference knockdown of 15 prioritized C. elegans genes identified those that sensitized animals to the benzimidazole derivative albendazole (ABZ). Genetic mutations subsequently revealed that loss of ugt-9 and ugt-11 had the strongest effects. The "ugt-9 cluster" includes these genes, together with six other closely related ugts. A CRISPR-Cas-9 deletion that removed seven of the eight ugt-9 cluster genes had greater ABZ sensitivity than the single largest-effect mutation. Furthermore, a double mutant of ugt-22 (which is not a member of the ugt-9 cluster) with the ugt-9 cluster deletion further increased ABZ sensitivity. This additivity of mutant phenotypes suggest that ugt genes act in parallel, which could have several, not mutually exclusive, explanations. ugt mutations have different effects with different benzimidazole derivatives, suggesting that enzymes with different specificities could together more efficiently detoxify drugs. Expression patterns of ugt-9, ugt-11 and ugt-22 gfp reporters differ and so likely act in different tissues which may, at least in part, explain their additive effects on drug potency. Overexpression of ugt-9 alone was sufficient to confer partial ABZ resistance, indicating increasing total UGT activity protects animals. In summary, our results suggest that the multiple UGT enzymes have overlapping but not completely redundant functions in benzimidazole drug detoxification and may represent "druggable" targets to improve benzimidazole drug potency.

2.
Cell Rep ; 43(4): 114005, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38551961

ABSTRACT

The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.


Subject(s)
Amacrine Cells , Cell Adhesion , Endocytosis , PTEN Phosphohydrolase , Retina , Wnt Signaling Pathway , Animals , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Retina/metabolism , Mice , Amacrine Cells/metabolism , Mice, Knockout , Protein Transport , Wnt Proteins/metabolism , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics
3.
Genetics ; 221(4)2022 07 30.
Article in English | MEDLINE | ID: mdl-35731216

ABSTRACT

Parasitic nematodes are major human and agricultural pests, and benzimidazoles are amongst the most important broad-spectrum anthelmintic drug class used for their control. Benzimidazole resistance is now widespread in many species of parasitic nematodes in livestock globally and an emerging concern for the sustainable control of human soil-transmitted helminths. ß-tubulin is the major benzimidazole target, although other genes may influence resistance. Among the 6 Caenorhabditis elegans ß-tubulin genes, loss of ben-1 causes resistance without other apparent defects. Here, we explored the genetics of C. elegans ß-tubulin genes in relation to the response to the benzimidazole derivative albendazole. The most highly expressed ß-tubulin isotypes, encoded by tbb-1 and tbb-2, were known to be redundant with each other for viability, and their products are predicted not to bind benzimidazoles. We found that tbb-2 mutants, and to a lesser extent tbb-1 mutants, were hypersensitive to albendazole. The double mutant tbb-2 ben-1 is uncoordinated and short, resembling the wild type exposed to albendazole, but the tbb-1 ben-1 double mutant did not show the same phenotypes. These results suggest that tbb-2 is a modifier of albendazole sensitivity. To better understand how BEN-1 mutates to cause benzimidazole resistance, we isolated mutants resistant to albendazole and found that 15 of 16 mutations occurred in the ben-1 coding region. Mutations ranged from likely nulls to hypomorphs, and several corresponded to residues that cause resistance in other organisms. Null alleles of ben-1 are albendazole-resistant and BEN-1 shows high sequence identity with tubulins from other organisms, suggesting that many amino acid changes could cause resistance. However, our results suggest that missense mutations conferring resistance are not evenly distributed across all possible conserved sites. Independent of their roles in benzimidazole resistance, tbb-1 and tbb-2 may have specialized functions as null mutants of tbb-1 or tbb-2 were cold or heat sensitive, respectively.


Subject(s)
Anthelmintics , Tubulin , Albendazole/metabolism , Albendazole/pharmacology , Animals , Anthelmintics/pharmacology , Benzimidazoles/pharmacology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Drug Resistance/genetics , Humans , Microtubules/metabolism , Tubulin/genetics , Tubulin/metabolism , Tubulin Modulators
4.
Genetics ; 221(1)2022 05 05.
Article in English | MEDLINE | ID: mdl-35298637

ABSTRACT

Microtubule severing plays important role in cell structure and cell division. The microtubule severing protein katanin, composed of the MEI-1/MEI-2 subunits in Caenorhabditis elegans, is required for oocyte meiotic spindle formation; however, it must be inactivated for mitosis to proceed as continued katanin expression is lethal. Katanin activity is regulated by 2 ubiquitin-based protein degradation pathways. Another ubiquitin ligase, HECD-1, the homolog of human HECTD1/HECT domain E3 ubiquitin protein ligase 1, regulates katanin activity without affecting katanin levels. In other organisms, HECD-1 is a component of the striatin-interacting kinase phosphatase complex, which affects cell proliferation and a variety of signaling pathways. Here we conducted a systematic screen of how mutations in striatin-interacting kinase phosphatase components affect katanin function in C. elegans. Striatin-interacting kinase phosphatase core components (FARL-11, CASH-1, LET-92, and GCK-1) were katanin inhibitors in mitosis and activators in meiosis, much like HECD-1. By contrast, variable components (SLMP-1, OTUB-2) functioned as activators of katanin activity in mitosis, indicating they may function to alter striatin-interacting kinase phosphatase core function. The core component CCM-3 acted as an inhibitor at both divisions, while other components (MOB-4, C49H3.6) showed weak interactions with katanin mutants. Additional experiments indicate that katanin may be involved with the centralspindlin complex and a tubulin chaperone. HECD-1 shows ubiquitous expression in the cytoplasm throughout meiosis and early development. The differing functions of the different subunits could contribute to the diverse functions of the striatin-interacting kinase phosphatase complex in C. elegans and other organisms.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Adenosine Triphosphatases/genetics , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Katanin/genetics , Katanin/metabolism , Meiosis/genetics , Microtubules/genetics , Microtubules/metabolism , Phosphoric Monoester Hydrolases/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism
5.
G3 (Bethesda) ; 11(7)2021 07 14.
Article in English | MEDLINE | ID: mdl-33974063

ABSTRACT

Actin and myosin mediate the epidermal cell contractions that elongate the Caenorhabditis elegans embryo from an ovoid to a tubular-shaped worm. Contraction occurs mainly in the lateral epidermal cells, while the dorsoventral epidermis plays a more passive role. Two parallel pathways trigger actinomyosin contraction, one mediated by LET-502/Rho kinase and the other by PAK-1/p21 activated kinase. A number of genes mediating morphogenesis have been shown to be sufficient when expressed either laterally or dorsoventrally. Additional genes show either lateral or dorsoventral phenotypes. This led us to a model where contractile genes have discrete functions in one or the other cell type. We tested this by examining several genes for either lateral or dorsoventral sufficiency. LET-502 expression in the lateral cells was sufficient to drive elongation. MEL-11/Myosin phosphatase, which antagonizes contraction, and PAK-1 were expected to function dorsoventrally, but we could not detect tissue-specific sufficiency. Double mutants of lethal alleles predicted to decrease lateral contraction with those thought to increase dorsoventral force were previously shown to be viable. We hypothesized that these mutant combinations shifted the contractile force from the lateral to the dorsoventral cells and so the embryos would elongate with less lateral cell contraction. This was tested by examining 10 single and double mutant strains. In most cases, elongation proceeded without a noticeable alteration in lateral contraction. We suggest that many embryonic elongation genes likely act in both lateral and dorsoventral cells, even though they may have their primary focus in one or the other cell type.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Protein Serine-Threonine Kinases , Morphogenesis/genetics , Epidermis/metabolism , rho-Associated Kinases/metabolism
6.
EBioMedicine ; 45: 379-392, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31231018

ABSTRACT

BACKGROUND: Peripheral neuropathies are often caused by disruption of genes responsible for myelination or axonal transport. In particular, impairment in mitochondrial fission and fusion are known causes of peripheral neuropathies. However, the causal mechanisms for peripheral neuropathy gene mutations are not always known. While loss of function mutations in MYH14 typically cause non-syndromic hearing loss, the recently described R941L mutation in MYH14, encoding the non-muscle myosin protein isoform NMIIC, leads to a complex clinical presentation with an unexplained peripheral neuropathy phenotype. METHODS: Confocal microscopy was used to examine mitochondrial dynamics in MYH14 patient fibroblast cells, as well as U2OS and M17 cells overexpressing NMIIC. The consequence of the R941L mutation on myosin activity was modeled in C. elegans. FINDINGS: We describe the third family carrying the R941L mutation in MYH14, and demonstrate that the R941L mutation impairs non-muscle myosin protein function. To better understand the molecular basis of the peripheral neuropathy phenotype associated with the R941L mutation, which has been hindered by the fact that NMIIC is largely uncharacterized, we have established a previously unrecognized biological role for NMIIC in mediating mitochondrial fission in human cells. Notably, the R941L mutation acts in a dominant-negative fashion to inhibit mitochondrial fission, especially in the cell periphery. In addition, we observed alterations to the organization of the mitochondrial genome. INTERPRETATION: As impairments in mitochondrial fission cause peripheral neuropathy, this insight into the function of NMIIC likely explains the peripheral neuropathy phenotype associated with the R941L mutation. FUND: This study was supported by the Alberta Children's Hospital Research Institute, the Canadian Institutes of Health Research and the Care4Rare Canada Consortium.


Subject(s)
Mitochondria/genetics , Mitochondrial Dynamics/genetics , Myosin Heavy Chains/genetics , Myosin Type II/genetics , Peripheral Nervous System Diseases/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , DNA, Mitochondrial/genetics , Female , Fibroblasts/metabolism , Humans , Male , Microscopy, Confocal , Mutation , Myosin-Light-Chain Phosphatase/genetics , Pedigree , Peripheral Nervous System Diseases/pathology , Exome Sequencing
7.
G3 (Bethesda) ; 8(7): 2277-2290, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29720391

ABSTRACT

The cytoskeleton is the basic machinery that drives many morphogenetic events. Elongation of the C. elegans embryo from a spheroid into a long, thin larva initially results from actomyosin contractility, mainly in the lateral epidermal seam cells, while the corresponding dorsal and ventral epidermal cells play a more passive role. This is followed by a later elongation phase involving muscle contraction. Early elongation is mediated by parallel genetic pathways involving LET-502/Rho kinase and MEL-11/MYPT myosin phosphatase in one pathway and FEM-2/PP2c phosphatase and PAK-1/p21 activated kinase in another. While the LET-502/MEL-11 pathway appears to act primarily in the lateral epidermis, here we show that FEM-2 can mediate early elongation when expressed in the dorsal and ventral epidermis. We also investigated the early elongation function of FHOD-1, a member of the formin family of actin nucleators and bundlers. Previous work showed that FHOD-1 acts in the LET-502/MEL-11 branch of the early elongation pathway as well as in muscle for sarcomere organization. Consistent with this, we found that lateral epidermal cell-specific expression of FHOD-1 is sufficient for elongation, and FHOD-1 effects on elongation appear to be independent of its role in muscle. Also, we found that fhod-1 encodes long and short isoforms that differ in the presence of a predicted coiled-coil domain. Based on tissue-specific expression constructions and an isoform-specific CRISPR allele, the two FHOD-1 isoforms show partially specialized epidermal or muscle function. Although fhod-1 shows only impenetrant elongation phenotypes, we were unable to detect redundancy with other C. elegans formin genes.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Gene Expression Regulation, Developmental , Microfilament Proteins/genetics , Morphogenesis/genetics , Phosphoprotein Phosphatases/genetics , Alternative Splicing , Animals , Animals, Genetically Modified , Embryo, Nonmammalian , Epidermis/embryology , Epidermis/metabolism , Formins , Organ Specificity/genetics , Phenotype
8.
G3 (Bethesda) ; 8(5): 1425-1437, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29593072

ABSTRACT

The ELT-2 GATA factor normally functions in differentiation of the C. elegans endoderm, downstream of endoderm specification. We have previously shown that, if ELT-2 is expressed sufficiently early, it is also able to specify the endoderm and to replace all other members of the core GATA-factor transcriptional cascade (END-1, END-3, ELT-7). However, such rescue requires multiple copies (and presumably overexpression) of the end-1p::elt-2 cDNA transgene; a single copy of the transgene does not rescue. We have made this observation the basis of a genetic screen to search for genetic modifiers that allow a single copy of the end-1p::elt-2 cDNA transgene to rescue the lethality of the end-1 end-3 double mutant. We performed this screen on a strain that has a single copy insertion of the transgene in an end-1 end-3 background. These animals are kept alive by virtue of an extrachromosomal array containing multiple copies of the rescuing transgene; the extrachromosomal array also contains a toxin under heat shock control to counterselect for mutagenized survivors that have been able to lose the rescuing array. A screen of ∼14,000 mutagenized haploid genomes produced 17 independent surviving strains. Whole genome sequencing was performed to identify genes that incurred independent mutations in more than one surviving strain. The C. elegans gene tasp-1 was mutated in four independent strains. tasp-1 encodes the C. elegans homolog of Taspase, a threonine-aspartic acid protease that has been found, in both mammals and insects, to cleave several proteins involved in transcription, in particular MLL1/trithorax and TFIIA. A second gene, pqn-82, was mutated in two independent strains and encodes a glutamine-asparagine rich protein. tasp-1 and pqn-82 were verified as loss-of-function modifiers of the end-1p::elt-2 transgene by RNAi and by CRISPR/Cas9-induced mutations. In both cases, gene loss leads to modest increases in the level of ELT-2 protein in the early endoderm although ELT-2 levels do not strictly correlate with rescue. We suggest that tasp-1 and pqn-82 represent a class of genes acting in the early embryo to modulate levels of critical transcription factors or to modulate the responsiveness of critical target genes. The screen's design, rescuing lethality with an extrachromosomal transgene followed by counterselection, has a background survival rate of <10-4 without mutagenesis and should be readily adapted to the general problem of identifying suppressors of C. elegans lethal mutations.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Cell Differentiation , Endoderm/metabolism , GATA Transcription Factors/genetics , Genes, Modifier , Intestines/cytology , Mutation/genetics , Amino Acid Sequence , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Cell Differentiation/genetics , Embryo, Nonmammalian/metabolism , GATA Transcription Factors/chemistry , GATA Transcription Factors/metabolism , Genetic Testing , Genotype , Reproducibility of Results , Survival Analysis , Whole Genome Sequencing , Zygote/metabolism
9.
Mol Genet Metab ; 122(4): 160-171, 2017 12.
Article in English | MEDLINE | ID: mdl-29153845

ABSTRACT

Vitamin B12 (cobalamin, Cbl) is a micronutrient essential to human health. Cbl is not utilized as is but must go through complex subcellular and metabolic processing to generate two cofactor forms: methyl-Cbl for methionine synthase, a cytosolic enzyme; and adenosyl-Cbl for methylmalonyl-CoA mutase, a mitochondrial enzyme. Some 10-12 human genes have been identified responsible for the intracellular conversion of Cbl to cofactor forms, including genes that code for ATP-binding cassette (ABC) transporters acting at the lysosomal and plasma membranes. However, the gene for mitochondrial uptake is not known. We hypothesized that ABC transporters should be candidates for other uptake and efflux functions, including mitochondrial transport, and set out to screen ABC transporter mutants for blocks in Cbl utilization using the nematode roundworm Caenorhabditis elegans. Thirty-seven mutant ABC transporters were screened for the excretion of methylmalonic acid (MMA), which should result from loss of Cbl transport into the mitochondria. One mutant, wht-6, showed elevated MMA excretion and reduced [14C]-propionate incorporation, pointing to a functional block in methylmalonyl-CoA mutase. In contrast, the wht-6 mutant appeared to have a normal cytosolic pathway based on analysis of cystathionine excretion, suggesting that cytosolic methionine synthase was functioning properly. Further, the MMA excretion in wht-6 could be partially reversed by including vitamin B12 in the assay medium. The human ortholog of wht-6 is a member of the G family of ABC transporters. We propose wht-6 as a candidate for the transport of Cbl into mitochondria and suggest that a member of the corresponding ABCG family of ABC transporters has this role in humans. Our ABC transporter screen also revealed that mrp-1 and mrp-2 mutants excreted lower MMA than wild type, suggesting they were concentrating intracellular Cbl, consistent with the cellular efflux defect proposed for the mammalian MRP1 ABC transporter.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Caenorhabditis elegans/metabolism , Vitamin B 12/metabolism , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Animals , Biological Transport , Caenorhabditis elegans/genetics , Cytosol/enzymology , Cytosol/metabolism , Humans , Lysosomes/metabolism , Mass Spectrometry , Methylmalonic Acid/metabolism , Methylmalonyl-CoA Mutase/metabolism , Mitochondria/enzymology , Multidrug Resistance-Associated Protein 2 , Mutation , Propionates/metabolism
10.
G3 (Bethesda) ; 6(10): 3257-3268, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27527792

ABSTRACT

After fertilization, rapid changes of the Caenorhabditis elegans cytoskeleton occur in the transition from meiosis to mitosis, requiring precise regulation. The MEI-1/MEI-2 katanin microtubule-severing complex is essential for meiotic spindle formation but must be quickly inactivated to allow for proper formation of the mitotic spindle. MEI-1/MEI-2 inactivation is dependent on multiple redundant pathways. The primary pathway employs the MEL-26 substrate adaptor for the CUL-3/cullin-based E3 ubiquitin ligase, which targets MEI-1 for proteosomal degradation. Here, we used quantitative antibody staining to measure MEI-1 levels to determine how other genes implicated in MEI-1 regulation act relative to CUL-3/MEL-26 The anaphase-promoting complex/cyclosome, APC/C, the DYRK (Dual-specificity tyrosine-regulated kinase), MBK-2, and the CUL-2-based E3 ubiquitin ligase act together to degrade MEI-1, in parallel to MEL-26/CUL-3 CUL-2 is known to keep MEL-26 low during meiosis, so CUL-2 apparently changes its target from MEL-26 in meiosis to MEI-1 in mitosis. RFL-1, an activator of cullin E3 ubiquitin ligases, activates CUL-2 but not CUL-3 for MEI-1 elimination. HECD-1 (HECT/Homologous to the E6AP carboxyl terminus domain) E3 ligase acts as a MEI-1 activator in meiosis but functions as an inhibitor during mitosis, without affecting levels of MEI-1 or MEI-2 Our results highlight the multiple layers of MEI-1 regulation that are required during the switch from the meiotic to mitotic modes of cell division.


Subject(s)
Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Animals , Caenorhabditis elegans/embryology , Cell Cycle/genetics , Epistasis, Genetic , Gene Expression Regulation, Developmental , Genotype , Katanin , Meiosis/genetics , Microtubules , Mitosis/genetics , Multiprotein Complexes/metabolism , Protein Binding , RNA Interference , Signal Transduction
11.
Dev Biol ; 405(2): 250-9, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26188247

ABSTRACT

Morphogenesis allows an organism to develop its final body shape. In Caenorhabditis elegans, a smooth muscle-like contraction of an actin/myosin network in the epidermis mediates the elongation of the worm embryo from a ball of cells into a long, thin worm. This process is controlled by two redundant pathways, one involving the small GTPase RHO-1 and its downstream effectors LET-502/Rho-binding kinase and MEL-11/myosin phosphatase, and another involving PAK-1/p21 activated kinase and FEM-2/PP2c phosphatase. Contraction occurs primarily in the lateral epidermal cells during elongation while the dorsal and ventral epidermal cells have a more passive role, and localized activity of a Rho GEF (guanine exchange factor) could contribute to this asymmetry. We found that loss of the C. elegans Rho GEF encoded by rhgf-2 results in arrest during early elongation. Genetically, rhgf-2 acts as an activator of let-502/Rho-binding kinase, in parallel to fem-2/PP2c phosphatase. Although expressed throughout the embryo, lateral cell-specific RHGF-2 expression can mediate elongation. The Rho GTPase activating protein (GAP) RGA-2 is known to inhibit contraction in the dorsal and ventral epidermis. Although rhgf-2 and rga-2 are individually lethal, the double mutant is viable with elongation still occurring in a let-502 dependent fashion. This indicates that LET-502/Rho-binding kinase has activity independent of the GEF and GAP. Finally, maternal LET-502 and MEL-11 are known to regulate the rate of cleavage furrow ingression in the early embryo and we show that maternal RHGF-2 also influences cleavage but RGA-2 does not. Thus while the LET-502/MEL-11 pathway is employed multiple times during embryogenesis, regulation by GEFs and GAPs differs at different points of the life cycle and fine tunes contractile function.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/physiology , Gene Expression Regulation, Developmental , Guanine Nucleotide Exchange Factors/physiology , rho-Associated Kinases/physiology , Alleles , Animals , Body Size , Cytokinesis , Epidermis/metabolism , Green Fluorescent Proteins/metabolism , Microscopy, Fluorescence , Morphogenesis , Mutation , Polymerase Chain Reaction , RNA Interference , Temperature , rho GTP-Binding Proteins/metabolism
12.
Elife ; 4: e06056, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25848744

ABSTRACT

Trisomy, the presence of a third copy of one chromosome, is deleterious and results in inviable or defective progeny if passed through the germ line. Random segregation of an extra chromosome is predicted to result in a high frequency of trisomic offspring from a trisomic parent. Caenorhabditis elegans with trisomy of the X chromosome, however, have far fewer trisomic offspring than expected. We found that the extra X chromosome was preferentially eliminated during anaphase I of female meiosis. We utilized a mutant with a specific defect in pairing of the X chromosome as a model to investigate the apparent bias against univalent inheritance. First, univalents lagged during anaphase I and their movement was biased toward the cortex and future polar body. Second, late-lagging univalents were frequently captured by the ingressing polar body contractile ring. The asymmetry of female meiosis can thus partially correct pre-existing trisomy.


Subject(s)
Asymmetric Cell Division/genetics , Caenorhabditis elegans/genetics , Inheritance Patterns , Trisomy , X Chromosome/chemistry , Anaphase , Animals , Chromosome Segregation , Female , Oocytes/metabolism , Oocytes/ultrastructure , X Chromosome/ultrastructure
13.
Mol Biol Cell ; 25(8): 1298-311, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24554763

ABSTRACT

In many animals, including vertebrates, oocyte meiotic spindles are bipolar but assemble in the absence of centrosomes. Although meiotic spindle positioning in oocytes has been investigated extensively, much less is known about their assembly. In Caenorhabditis elegans, three genes previously shown to contribute to oocyte meiotic spindle assembly are the calponin homology domain protein encoded by aspm-1, the katanin family member mei-1, and the kinesin-12 family member klp-18. We isolated temperature-sensitive alleles of all three and investigated their requirements using live-cell imaging to reveal previously undocumented requirements for aspm-1 and mei-1. Our results indicate that bipolar but abnormal oocyte meiotic spindles assemble in aspm-1(-) embryos, whereas klp-18(-) and mei-1(-) mutants assemble monopolar and apolar spindles, respectively. Furthermore, two MEI-1 functions--ASPM-1 recruitment to the spindle and microtubule severing--both contribute to monopolar spindle assembly in klp-18(-) mutants. We conclude that microtubule severing and ASPM-1 both promote meiotic spindle pole assembly in C. elegans oocytes, whereas the kinesin 12 family member KLP-18 promotes spindle bipolarity.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/embryology , Spindle Apparatus/genetics , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Caenorhabditis elegans Proteins/genetics , Kinesins/genetics , Kinesins/metabolism , Meiosis , Microtubules/metabolism , Mitogen-Activated Protein Kinase 7/genetics , Mutation , Oocytes/enzymology , RNA Interference , RNA, Small Interfering , Spindle Apparatus/metabolism , Temperature
14.
Mol Biol Cell ; 25(7): 1037-49, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24501424

ABSTRACT

Assembly of Caenorhabditis elegans female meiotic spindles requires both MEI-1 and MEI-2 subunits of the microtubule-severing ATPase katanin. Strong loss-of-function mutants assemble apolar intersecting microtubule arrays, whereas weaker mutants assemble bipolar meiotic spindles that are longer than wild type. To determine whether katanin is also required for spindle maintenance, we monitored metaphase I spindles after a fast-acting mei-1(ts) mutant was shifted to a nonpermissive temperature. Within 4 min of temperature shift, bivalents moved off the metaphase plate, and microtubule bundles within the spindle lengthened and developed a high degree of curvature. Spindles eventually lost bipolar structure. Immunofluorescence of embryos fixed at increasing temperature indicated that MEI-1 was lost from spindle microtubules before loss of ASPM-1, indicating that MEI-1 and ASPM-1 act independently at spindle poles. We quantified the microtubule-severing activity of purified MEI-1/MEI-2 complexes corresponding to six different point mutations and found a linear relationship between microtubule disassembly rate and meiotic spindle length. Previous work showed that katanin is required for severing at points where two microtubules intersect in vivo. We show that purified MEI-1/MEI-2 complexes preferentially sever at intersections between two microtubules and directly bundle microtubules in vitro. These activities could promote parallel/antiparallel microtubule organization in meiotic spindles.


Subject(s)
Adenosine Triphosphatases/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/cytology , Chromosomes/metabolism , Meiosis , Metaphase , Microtubules/metabolism , Spindle Apparatus/metabolism , Alleles , Animals , Caenorhabditis elegans/metabolism , Female , Katanin , Models, Biological , Point Mutation , Protein Binding , Protein Transport , Temperature
15.
G3 (Bethesda) ; 3(11): 2015-29, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24048649

ABSTRACT

The guidance of axons to their correct targets is a critical step in development. The C. elegans pharynx presents an attractive system to study neuronal pathfinding in the context of a developing organ. The worm pharynx contains relatively few cells and cell types, but each cell has a known lineage and stereotyped developmental patterns. We found that extension of the M1 pharyngeal axon, which spans the entire length of the pharynx, occurs in two distinct phases. The first proximal phase does not require genes that function in axon extension (unc-34, unc-51, unc-115, and unc-119), whereas the second distal phase does use these genes and is guided in part by the adjacent g1P gland cell projection. unc-34, unc-51, and unc-115 had incompletely penetrant defects and appeared to act in conjunction with the g1P cell for distal outgrowth. Only unc-119 showed fully penetrant defects for the distal phase. Mutations affecting classical neuronal guidance cues (Netrin, Semaphorin, Slit/Robo, Ephrin) or adhesion molecules (cadherin, IgCAM) had, at best, weak effects on the M1 axon. None of the mutations we tested affected the proximal phase of M1 elongation. In a forward genetic screen, we isolated nine mutations in five genes, three of which are novel, showing defects in M1, including axon overextension, truncation, or ectopic branching. One of these mutations appeared to affect the generation or differentiation of the M1 neuron. We conclude that M1 axon extension is a robust process that is not completely dependent on any single guidance mechanism.


Subject(s)
Axons/metabolism , Caenorhabditis elegans/genetics , Neurons/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Genome , Genotype , Pharynx/physiology , Phenotype , Polymorphism, Single Nucleotide , Signal Transduction/genetics
16.
J Cell Biol ; 202(3): 431-9, 2013 Aug 05.
Article in English | MEDLINE | ID: mdl-23918937

ABSTRACT

Katanin is an evolutionarily conserved microtubule (MT)-severing complex implicated in multiple aspects of MT dynamics. In Caenorhabditis elegans, the katanin homologue MEI-1 is required for meiosis, but must be inactivated before mitosis. Here we show that PPFR-1, a regulatory subunit of a trimeric protein phosphatase 4 complex, enhanced katanin MT-severing activity during C. elegans meiosis. Loss of ppfr-1, similarly to the inactivation of MT severing, caused a specific defect in meiosis II spindle disassembly. We show that a fraction of PPFR-1 was degraded after meiosis, contributing to katanin inactivation. PPFR-1 interacted with MEL-26, the substrate recognition subunit of the CUL-3 RING E3 ligase (CRL3(MEL-26)), which also targeted MEI-1 for post-meiotic degradation. Reversible protein phosphorylation of MEI-1 may ensure temporal activation of the katanin complex during meiosis, whereas CRL3(MEL-26)-mediated degradation of both MEI-1 and its activator PPFR-1 ensure efficient katanin inactivation in the transition to mitosis.


Subject(s)
Adenosine Triphosphatases/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Microtubules/metabolism , Phosphoprotein Phosphatases/metabolism , Animals , Caenorhabditis elegans/genetics , Katanin , Multiprotein Complexes/metabolism , Phosphorylation
17.
Worm ; 2(3): e25040, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-24778933

ABSTRACT

During the second half of embryogenesis, the ellipsoidal Caenorhabditis elegans embryo elongates into a long, thin worm. This elongation requires a highly organized cytoskeleton composed of actin microfilaments, microtubules and intermediate filaments throughout the epidermis of the embryo. This architecture allows the embryonic epidermal cells to undergo a smooth muscle-like actin/myosin-based contraction that is redundantly controlled by LET- 502/Rho kinase and MEL-11/myosin phosphatase in one pathway and FEM-2/PP2c phosphatase and PAK-1/p21-activated kinase in a parallel pathway(s). Although actin microfilaments surround the embryo, the force for contraction is generated mainly in the lateral (seam) epidermal cells whose actin microfilaments appear qualitatively different from those in their dorsal/ventral neighbors. We have identified FHOD-1, a formin family actin nucleator, which acts in the lateral epidermis. fhod-1 mutants show microfilament defects in the embryonic lateral epidermal cells and FHOD-1 protein is detected only in those cells. fhod-1 genetic interactions with let-502, mel-11, fem-2 and pak-1 indicate that fhod-1 preferentially regulates those microfilaments acting with let-502 and mel-11, and in parallel to fem-2 and pak-1. Thus, FHOD-1 may contribute to the qualitative differences in microfilaments found in the contractile lateral epidermal cells and their non-contractile dorsal and ventral neighbors. Different microfilament populations may be involved in the different contractile pathways.

18.
Mol Biol Cell ; 23(14): 2623-34, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22621901

ABSTRACT

The ubiquitin proteasome system is involved in degradation of old or damaged sarcomeric proteins. Most E3 ubiquitin ligases are associated with cullins, which function as scaffolds for assembly of the protein degradation machinery. Cullin 3 uses an adaptor to link to substrates; in Caenorhabditis elegans, one of these adaptors is the BTB-domain protein MEL-26 (maternal effect lethal). Here we show that MEL-26 interacts with the giant sarcomeric protein UNC-89 (obscurin). MEL-26 and UNC-89 partially colocalize at sarcomeric M-lines. Loss of function or gain of function of mel-26 results in disorganization of myosin thick filaments similar to that found in unc-89 mutants. It had been reported that in early C. elegans embryos, a target of the CUL-3/MEL-26 ubiquitylation complex is the microtubule-severing enzyme katanin (MEI-1). Loss of function or gain of function of mei-1 also results in disorganization of thick filaments similar to unc-89 mutants. Genetic data indicate that at least some of the mel-26 loss-of-function phenotype in muscle can be attributed to increased microtubule-severing activity of MEI-1. The level of MEI-1 protein is reduced in an unc-89 mutant, suggesting that the normal role of UNC-89 is to inhibit the CUL-3/MEL-26 complex toward MEI-1.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenosine Triphosphatases/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Muscle Proteins/metabolism , Muscle, Striated/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adenosine Triphosphatases/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cullin Proteins/metabolism , Muscle Proteins/genetics , Myosins/metabolism , Proteolysis , RNA Interference , RNA, Small Interfering , Sarcomeres/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
19.
Dev Biol ; 330(2): 349-57, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19361490

ABSTRACT

The MEI-1/MEI-2 microtubule-severing complex, katanin, is required for oocyte meiotic spindle formation and function in C. elegans, but the microtubule-severing activity must be quickly downregulated so that it does not interfere with formation of the first mitotic spindle. Post-meiotic MEI-1 inactivation is accomplished by two parallel protein degradation pathways, one of which requires MEL-26, the substrate-specific adaptor that recruits MEI-1 to a CUL-3 based ubiquitin ligase. Here we address the question of how MEL-26 mediated MEI-1 degradation is triggered only after the completion of MEI-1's meiotic function. We find that MEL-26 is present only at low levels until the completion of meiosis, after which protein levels increase substantially, likely increasing the post-meiotic degradation of MEI-1. During meiosis, MEL-26 levels are kept low by the action of another type of ubiquitin ligase, which contains CUL-2. However, we find that the low levels of meiotic MEL-26 have a subtle function, acting to moderate MEI-1 activity during meiosis. We also show that MEI-1 is the only essential target for MEL-26, and possibly for the E3 ubiquitin ligase CUL-3, but the upstream ubiquitin ligase activating enzyme RFL-1 has additional essential targets.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenosine Triphosphatases/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cullin Proteins/metabolism , Meiosis , Microtubules , Mitosis , Animals , Caenorhabditis elegans/cytology , Katanin
20.
Genetics ; 181(2): 473-82, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19015549

ABSTRACT

The inhibitor of growth (ING) family of type II tumor suppressors are encoded by five genes in mammals and by three genes in Caenorhabditis elegans. All ING proteins contain a highly conserved plant homeodomain (PHD) zinc finger. ING proteins are activated by stresses, including ionizing radiation, leading to the activation of p53. ING proteins in mammals and yeast have recently been shown to read the histone code in a methylation-sensitive manner to regulate gene expression. Here we identify and characterize ing-3, the C. elegans gene with the highest sequence identity to the human ING3 gene. ING-3 colocalizes with chromatin in embryos, the germline, and somatic cells. The ing-3 gene is part of an operon but is also transcribed from its own promoter. Both ing-3(RNAi) and ing-3 mutant strains demonstrate that the gene likely functions in concert with the C. elegans p53 homolog, cep-1, to induce germ-cell apoptosis in response to ionizing radiation. Somatically, the ing-3 mutant has a weak kinker uncoordinated (kinker Unc) phenotype, indicating a possible neuronal function.


Subject(s)
Apoptosis/genetics , Caenorhabditis elegans/genetics , Genes, Helminth , Genes, Tumor Suppressor , Animals , Animals, Genetically Modified , Apoptosis/radiation effects , Base Sequence , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/radiation effects , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , DNA Primers/genetics , DNA, Helminth/genetics , Gene Expression , Germ Cells/cytology , Germ Cells/radiation effects , Homeodomain Proteins/genetics , Humans , Immunohistochemistry , Mutation , RNA Interference , Species Specificity , Tissue Distribution , Trans-Activators/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...