Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 48(7): 1870-1873, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37221787

ABSTRACT

We report on the generation of a passive carrier-envelope phase (CEP) stable 1.7-cycle pulse in the mid-infrared by adiabatic difference frequency generation. With sole material-based compression, we achieve a sub-2-cycle 16-fs pulse at a center wavelength of 2.7 µm and measured a CEP stability of <190 mrad root mean square. The CEP stabilization performance of an adiabatic downconversion process is characterized for the first time, to the best of our knowledge.

2.
Opt Express ; 31(7): 11363-11394, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37155774

ABSTRACT

The availability of electromagnetic pulses with controllable field waveform and extremely short duration, even below a single optical cycle, is imperative to fully harness strong-field processes and to gain insight into ultrafast light-driven mechanisms occurring in the attosecond time-domain. The recently demonstrated parametric waveform synthesis (PWS) introduces an energy-, power- and spectrum-scalable method to generate non-sinusoidal sub-cycle optical waveforms by coherently combining different phase-stable pulses attained via optical parametric amplifiers. Significant technological developments have been made to overcome the stability issues related to PWS and to obtain an effective and reliable waveform control system. Here we present the main ingredients enabling PWS technology. The design choices concerning the optical, mechanical and electronic setups are justified by analytical/numerical modeling and benchmarked by experimental observations. In its present incarnation, PWS technology enables the generation of field-controllable mJ-level few-femtosecond pulses spanning the visible to infrared range.

3.
Nat Commun ; 12(1): 6641, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34789715

ABSTRACT

Attosecond science promises to reveal the most fundamental electronic dynamics occurring in matter and it can develop further by meeting two linked technological goals related to high-order harmonic sources: improved spectral tunability (allowing selectivity in addressing electronic transitions) and higher photon flux (permitting to measure low cross-section processes). New developments come through parametric waveform synthesis, which provides control over the shape of field transients, enabling the creation of highly-tunable isolated attosecond pulses via high-harmonic generation. Here we demonstrate that the first goal is fulfilled since central energy, spectral bandwidth/shape and temporal duration of isolated attosecond pulses can be controlled by shaping the laser waveform via two key parameters: the relative-phase between two halves of the multi-octave spanning spectrum, and the overall carrier-envelope phase. These results not only promise to expand the experimental possibilities in attosecond science, but also demonstrate coherent strong-field control of free-electron trajectories using tailored optical waveforms.

4.
Opt Lett ; 43(2): 178-181, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29328232

ABSTRACT

We study the effect of pump-seed timing fluctuations on the carrier-envelope phase (CEP) of signal and idler pulses emerging from an OP(CP)A. A simple analytical model is derived in order to provide an intuitive explanation of the origin of CEP fluctuations, while split-step simulations are performed to cover a broad range of different seeding schemes. Finally, we compare the simulation results with real observations of the CEP of idler pulses generated by an OPA. The quantitative model presented provides a key tool for designing the next generation of low-noise CEP-stable OP(CP)A-based sources.

5.
Opt Express ; 25(4): 3052-3068, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28241522

ABSTRACT

We introduce a simple all-inline variation of a balanced optical cross-correlator (BOC) that allows to measure the arrival time difference (ATD), over the full Nyquist bandwidth, with increased common-mode rejection and long-term stability. An FPGA-based signal processing unit allows for real-time signal normalization and enables locking to any setpoint with an unprecedented accuracy of 0.07 % within an increased ATD range of more than 400 fs, resulting in attosecond resolution locking. The setup precision is verified with an out-of-loop measurement to be less than 80 as residual jitter paving the way for highly demanding applications such as parametric waveform synthesizers.

SELECTION OF CITATIONS
SEARCH DETAIL
...