Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4071, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37429879

ABSTRACT

The network of thymic stromal cells provides essential niches with unique molecular cues controlling T cell development and selection. Recent single-cell RNA sequencing studies have uncovered previously unappreciated transcriptional heterogeneity among thymic epithelial cells (TEC). However, there are only very few cell markers that allow a comparable phenotypic identification of TEC. Here, using massively parallel flow cytometry and machine learning, we deconvoluted known TEC phenotypes into novel subpopulations. Using CITEseq, these phenotypes were related to corresponding TEC subtypes defined by the cells' RNA profiles. This approach allowed the phenotypic identification of perinatal cTEC and their physical localisation within the cortical stromal scaffold. In addition, we demonstrate the dynamic change in the frequency of perinatal cTEC in response to developing thymocytes and reveal their exceptional efficiency in positive selection. Collectively, our study identifies markers that allow for an unprecedented dissection of the thymus stromal complexity, as well as physical isolation of TEC populations and assignment of specific functions to individual TEC subtypes.


Subject(s)
Epithelial Cells , Thymocytes , Female , Pregnancy , Humans , Cell Differentiation , Cues , RNA
2.
J Immunol ; 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36427001

ABSTRACT

In the thymus, cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells support αßT cell development from lymphoid progenitors. For cTECs, expression of a specialized gene signature that includes Cxcl12, Dll4, and Psmb11 enables the cortex to support T lineage commitment and the generation and selection of CD4+CD8+ thymocytes. Although the importance of cTECs in T cell development is well defined, mechanisms that shape the cTEC compartment and regulate its functional specialization are unclear. Using a Cxcl12DsRed reporter mouse model, we show that changes in Cxcl12 expression reveal a developmentally regulated program of cTEC heterogeneity. Although cTECs are uniformly Cxcl12DsRed+ during neonatal stages, progression through postnatal life triggers the appearance of Cxcl12DsRed- cTECs that continue to reside in the cortex alongside their Cxcl12DsRed+ counterparts. This appearance of Cxcl12DsRed- cTECs is controlled by maturation of CD4-CD8-, but not CD4+CD8+, thymocytes, demonstrating that stage-specific thymocyte cross-talk controls cTEC heterogeneity. Importantly, although fate-mapping experiments show both Cxcl12DsRed+ and Cxcl12DsRed- cTECs share a common Foxn1+ cell origin, RNA sequencing analysis shows Cxcl12DsRed- cTECs no longer express Foxn1, which results in loss of the FOXN1-dependent cTEC gene signature and may explain the reduced capacity of Cxcl12DsRed- cTECs for thymocyte interactions. In summary, our study shows that shaping of the cTEC compartment during the life course occurs via stage-specific thymocyte cross-talk, which drives loss of Foxn1 expression and its key target genes, which may then determine the functional competence of the thymic cortex.

3.
J Immunol ; 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36375838

ABSTRACT

In the thymus, cortical thymic epithelial cells (cTECs) and medullary thymic epithelial cells support αßT cell development from lymphoid progenitors. For cTECs, expression of a specialized gene signature that includes Cxcl12, Dll4, and Psmb11 enables the cortex to support T lineage commitment and the generation and selection of CD4+CD8+ thymocytes. Although the importance of cTECs in T cell development is well defined, mechanisms that shape the cTEC compartment and regulate its functional specialization are unclear. Using a Cxcl12 DsRed reporter mouse model, we show that changes in Cxcl12 expression reveal a developmentally regulated program of cTEC heterogeneity. Although cTECs are uniformly Cxcl12 DsRed+ during neonatal stages, progression through postnatal life triggers the appearance of Cxcl12 DsRed- cTECs that continue to reside in the cortex alongside their Cxcl12 DsRed+ counterparts. This appearance of Cxcl12 DsRed- cTECs is controlled by maturation of CD4-CD8-, but not CD4+CD8+, thymocytes, demonstrating that stage-specific thymocyte cross-talk controls cTEC heterogeneity. Importantly, although fate-mapping experiments show both Cxcl12 DsRed+ and Cxcl12 DsRed- cTECs share a common Foxn1 + cell origin, RNA sequencing analysis shows Cxcl12 DsRed- cTECs no longer express Foxn1, which results in loss of the FOXN1-dependent cTEC gene signature and may explain the reduced capacity of Cxcl12 DsRed- cTECs for thymocyte interactions. In summary, our study shows that shaping of the cTEC compartment during the life course occurs via stage-specific thymocyte cross-talk, which drives loss of Foxn1 expression and its key target genes, which may then determine the functional competence of the thymic cortex.

4.
Sci Adv ; 8(19): eabm9844, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35559672

ABSTRACT

The thymic stroma is composed of epithelial and nonepithelial cells providing separate microenvironments controlling homing, differentiation, and selection of hematopoietic precursor cells to functional T cells. Here, we explore at single-cell resolution the complex composition and dynamic changes of the nonepithelial stromal compartment across different developmental stages in the human and mouse thymus, and in an experimental model of the DiGeorge syndrome, the most common form of human thymic hypoplasia. The detected gene expression signatures identify previously unknown stromal subtypes and relate their individual molecular profiles to separate differentiation trajectories and functions, revealing an unprecedented heterogeneity of different cell types that emerge at discrete developmental stages and vary in their expression of key regulatory signaling circuits and extracellular matrix components. Together, these findings highlight the dynamic complexity of the nonepithelial thymus stroma and link this to separate instructive roles essential for normal thymus organogenesis and tissue maintenance.

5.
Sci Adv ; 7(49): eabj9247, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34860543

ABSTRACT

The transcription factor FOXN1 is a master regulator of thymic epithelial cell (TEC) development and function. Here, we demonstrate that FOXN1 expression is differentially regulated during organogenesis and participates in multimolecular nuclear condensates essential for the factor's transcriptional activity. FOXN1's C-terminal sequence regulates the diffusion velocity within these aggregates and modulates the binding to proximal gene regulatory regions. These dynamics are altered in a patient with a mutant FOXN1 that is modified in its C-terminal sequence. This mutant is transcriptionally inactive and acts as a dominant negative factor displacing wild-type FOXN1 from condensates and causing athymia and severe lymphopenia in heterozygotes. Expression of the mutated mouse ortholog selectively impairs mouse TEC differentiation, revealing a gene dose dependency for individual TEC subtypes. We have therefore identified the cause for a primary immunodeficiency disease and determined the mechanism by which this FOXN1 gain-of-function mutant mediates its dominant negative effect.

6.
Genome Res ; 31(11): 2022-2034, 2021 11.
Article in English | MEDLINE | ID: mdl-34649931

ABSTRACT

Thymic epithelial cells (TEC) control the selection of a T cell repertoire reactive to pathogens but tolerant of self. This process is known to involve the promiscuous expression of virtually the entire protein-coding gene repertoire, but the extent to which TEC recapitulate peripheral isoforms, and the mechanisms by which they do so, remain largely unknown. We performed the first assembly-based transcriptomic census of transcript structures and splicing factor (SF) expression in mouse medullary TEC (mTEC) and 21 peripheral tissues. Mature mTEC expressed 60.1% of all protein-coding transcripts, more than was detected in any of the peripheral tissues. However, for genes with tissue-restricted expression, mTEC produced fewer isoforms than did the relevant peripheral tissues. Analysis of exon inclusion revealed an absence of brain-specific microexons in mTEC. We did not find unusual numbers of novel transcripts in TEC, and we show that Aire, the facilitator of promiscuous gene expression, promotes the generation of long "classical" transcripts (with 5' and 3' UTRs) but has only a limited impact on alternative splicing in mTEC. Comprehensive assessment of SF expression in mTEC identified a small set of nonpromiscuously expressed SF genes, among which we confirmed RBFOX to be present with AIRE in mTEC nuclei. Using a conditional loss-of-function approach, we show that Rbfox2 promotes mTEC development and regulates the alternative splicing of promiscuously expressed genes. These data indicate that TEC recommission a small number of peripheral SFs, including members of the RBFOX family, to generate a broad but selective representation of the peripheral splice isoform repertoire.


Subject(s)
Gene Expression Profiling , RNA Splicing , Animals , Cell Differentiation/genetics , Epithelial Cells/metabolism , Mice , Mice, Inbred C57BL , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Thymus Gland/metabolism , Transcriptome
7.
Sci Immunol ; 6(63): eabf6723, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34533979

ABSTRACT

Inhibitor of nuclear factor kappa B kinase alpha (IKKα) is critical for p100/NF-κB2 phosphorylation and processing into p52 and activation of the noncanonical NF-κB pathway. A patient with recurrent infections, skeletal abnormalities, absent secondary lymphoid structures, reduced B cell numbers, hypogammaglobulinemia, and lymphocytic infiltration of intestine and liver was found to have a homozygous p.Y580C mutation in the helix-loop-helix domain of IKKα. The mutation preserves IKKα kinase activity but abolishes the interaction of IKKα with its activator NF-κB­inducing kinase and impairs lymphotoxin-ß­driven p100/NF-κB2 processing and VCAM1 expression. Homozygous IKKαY580C/Y580C mutant mice phenocopy the patient findings; lack marginal zone B cells, germinal centers, and antigen-specific T cell response to cutaneous immunization; have impaired Il17a expression; and are susceptible to cutaneous Staphylococcus aureus infection. In addition, these mice demonstrate a severe reduction in medullary thymic epithelial cells, impaired thymocyte negative selection, a restricted TCRVß repertoire, a selective expansion of potentially autoreactive T cell clones, a decreased frequency of regulatory T cells, and infiltration of liver, pancreas, and lung by activated T cells coinciding with organ damage. Hence, this study identifies IKKα deficiency as a previously undescribed cause of primary immunodeficiency with associated autoimmunity.


Subject(s)
Autoimmunity/immunology , I-kappa B Kinase/immunology , Mutation, Missense/genetics , Animals , HEK293 Cells , Humans , I-kappa B Kinase/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation, Missense/immunology
8.
Commun Biol ; 4(1): 681, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083746

ABSTRACT

T cells rely for their development and function on the correct folding and turnover of proteins generated in response to a broad range of molecular cues. In the absence of the eukaryotic type II chaperonin complex, CCT, T cell activation induced changes in the proteome are compromised including the formation of nuclear actin filaments and the formation of a normal cell stress response. Consequently, thymocyte maturation and selection, and T cell homeostatic maintenance and receptor-mediated activation are severely impaired. In the absence of CCT-controlled protein folding, Th2 polarization diverges from normal differentiation with paradoxical continued IFN-γ expression. As a result, CCT-deficient T cells fail to generate an efficient immune protection against helminths as they are unable to sustain a coordinated recruitment of the innate and adaptive immune systems. These findings thus demonstrate that normal T cell biology is critically dependent on CCT-controlled proteostasis and that its absence is incompatible with protective immunity.


Subject(s)
Chaperonin Containing TCP-1/immunology , Proteostasis/immunology , T-Lymphocytes/immunology , Thymocytes/immunology , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Cells, Cultured , Chaperonin Containing TCP-1/genetics , Chaperonin Containing TCP-1/metabolism , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Mice, Knockout , Proteome/immunology , Proteome/metabolism , Proteostasis/genetics , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Thymocytes/cytology , Thymocytes/metabolism , Transcriptome/genetics , Transcriptome/immunology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
9.
Semin Immunopathol ; 43(1): 85-100, 2021 02.
Article in English | MEDLINE | ID: mdl-33257998

ABSTRACT

As the primary site for T cell development, the thymus is responsible for the production and selection of a functional, yet self-tolerant T cell repertoire. This critically depends on thymic stromal cells, derived from the pharyngeal apparatus during embryogenesis. Thymic epithelial cells, mesenchymal and vascular elements together form the unique and highly specialised microenvironment required to support all aspects of thymopoiesis and T cell central tolerance induction. Although rare, inborn errors of thymic stromal cells constitute a clinically important group of conditions because their immunological consequences, which include autoimmune disease and T cell immunodeficiency, can be life-threatening if unrecognised and untreated. In this review, we describe the molecular and environmental aetiologies of the thymic stromal cell defects known to cause disease in humans, placing particular emphasis on those with a propensity to cause thymic hypoplasia or aplasia and consequently severe congenital immunodeficiency. We discuss the principles underpinning their diagnosis and management, including the use of novel tools to aid in their identification and strategies for curative treatment, principally transplantation of allogeneic thymus tissue.


Subject(s)
Autoimmune Diseases , Stromal Cells , Cell Differentiation , Epithelial Cells , Humans , T-Lymphocytes , Thymus Gland
10.
Elife ; 92020 08 25.
Article in English | MEDLINE | ID: mdl-32840480

ABSTRACT

Ageing is characterised by cellular senescence, leading to imbalanced tissue maintenance, cell death and compromised organ function. This is first observed in the thymus, the primary lymphoid organ that generates and selects T cells. However, the molecular and cellular mechanisms underpinning these ageing processes remain unclear. Here, we show that mouse ageing leads to less efficient T cell selection, decreased self-antigen representation and increased T cell receptor repertoire diversity. Using a combination of single-cell RNA-seq and lineage-tracing, we find that progenitor cells are the principal targets of ageing, whereas the function of individual mature thymic epithelial cells is compromised only modestly. Specifically, an early-life precursor cell population, retained in the mouse cortex postnatally, is virtually extinguished at puberty. Concomitantly, a medullary precursor cell quiesces, thereby impairing maintenance of the medullary epithelium. Thus, ageing disrupts thymic progenitor differentiation and impairs the core immunological functions of the thymus.


Subject(s)
Aging , Cell Differentiation , Epithelial Cells/physiology , Thymus Gland/physiopathology , Transcriptome/physiology , Animals , Female , Mice , Mice, Inbred C57BL , Single-Cell Analysis
11.
EMBO J ; 39(1): e101828, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31657037

ABSTRACT

To induce central T-cell tolerance, medullary thymic epithelial cells (mTEC) collectively express most protein-coding genes, thereby presenting an extensive library of tissue-restricted antigens (TRAs). To resolve mTEC diversity and whether promiscuous gene expression (PGE) is stochastic or coordinated, we sequenced transcriptomes of 6,894 single mTEC, enriching for 1,795 rare cells expressing either of two TRAs, TSPAN8 or GP2. Transcriptional heterogeneity allowed partitioning of mTEC into 15 reproducible subpopulations representing distinct maturational trajectories, stages and subtypes, including novel mTEC subsets, such as chemokine-expressing and ciliated TEC, which warrant further characterisation. Unexpectedly, 50 modules of genes were robustly defined each showing patterns of co-expression within individual cells, which were mainly not explicable by chromosomal location, biological pathway or tissue specificity. Further, TSPAN8+ and GP2+ mTEC were randomly dispersed within thymic medullary islands. Consequently, these data support observations that PGE exhibits ordered co-expression, although mechanisms underlying this instruction remain biologically indeterminate. Ordered co-expression and random spatial distribution of a diverse range of TRAs likely enhance their presentation and encounter with passing thymocytes, while maintaining mTEC identity.


Subject(s)
Biomarkers/metabolism , Epithelial Cells/metabolism , Single-Cell Analysis/methods , Thymus Gland/metabolism , Transcriptome , Animals , Biomarkers/analysis , Cell Differentiation , Epithelial Cells/cytology , Female , Gene Expression Profiling , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Organ Specificity , Thymus Gland/cytology
12.
JCI Insight ; 52019 05 07.
Article in English | MEDLINE | ID: mdl-31063156

ABSTRACT

BACKGROUND: The lymphocyte-depleting antibody alemtuzumab is a highly effective treatment of relapsing-remitting multiple sclerosis (RRMS); however 50% of patients develop novel autoimmunity post-treatment. Most at risk are individuals who reconstitute their T-cell pool by proliferating residual cells, rather than producing new T-cells in the thymus; raising the possibility that autoimmunity might be prevented by increasing thymopoiesis. Keratinocyte growth factor (palifermin) promotes thymopoiesis in non-human primates. METHODS: Following a dose-tolerability sub-study, individuals with RRMS (duration ≤10 years; expanded disability status scale ≤5·0; with ≥2 relapses in the previous 2 years) were randomised to placebo or 180mcg/kg/day palifermin, given for 3 days immediately prior to and after each cycle of alemtuzumab, with repeat doses at M1 and M3. The interim primary endpoint was naïve CD4+ T-cell count at M6. Exploratory endpoints included: number of recent thymic-emigrants (RTEs) and signal-joint T-cell receptor excision circles (sjTRECs)/mL of blood. The trial primary endpoint was incidence of autoimmunity at M30. FINDINGS: At M6, individuals receiving palifermin had fewer naïve CD4+T-cells (2.229x107/L vs. 7.733x107/L; p=0.007), RTEs (16% vs. 34%) and sjTRECs/mL (1100 vs. 3396), leading to protocol-defined termination of recruitment. No difference was observed in the rate of autoimmunity between the two groupsConclusion: In contrast to animal studies, palifermin reduced thymopoiesis in our patients. These results offer a note of caution to those using palifermin to promote thymopoiesis in other settings, particularly in the oncology/haematology setting where alemtuzumab is often used as part of the conditioning regime. TRIAL REGISTRATION: ClinicalTrials.gov NCT01712945Funding: MRC and Moulton Charitable Foundation.


Subject(s)
Fibroblast Growth Factor 7/pharmacology , Lymphopenia/drug therapy , Adolescent , Adult , Animals , CD4-Positive T-Lymphocytes/immunology , CD52 Antigen/metabolism , Disease Models, Animal , Female , Fibroblast Growth Factor 7/therapeutic use , Humans , Male , Mice , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/immunology , Young Adult
13.
Front Immunol ; 9: 2120, 2018.
Article in English | MEDLINE | ID: mdl-30283453

ABSTRACT

Thymic epithelial cells (TEC) effect crucial roles in thymopoiesis including the control of negative thymocyte selection. This process depends on their capacity to express promiscuously genes encoding tissue-restricted antigens. This competence is accomplished in medullary TEC (mTEC) in part by the presence of the transcriptional facilitator AutoImmune REgulator, AIRE. AIRE-regulated gene transcription is marked by repressive chromatin modifications, including H3K27me3. When during TEC development these chromatin marks are established, however, remains unclear. Here we use a comprehensive ChIP-seq dataset of multiple chromatin modifications in different TEC subtypes to demonstrate that the chromatin landscape is established early in TEC differentiation. Much of the chromatin architecture found in mature mTEC was found to be present already over earlier stages of mTEC lineage differentiation as well as in non-TEC tissues. This was reflected by the fact that a machine learning approach accurately classified genes as AIRE-induced or AIRE-independent both in immature and mature mTEC. Moreover, analysis of TEC specific enhancer elements identified candidate transcription factors likely to be important in mTEC development and function. Our findings indicate that the mature mTEC chromatin landscape is laid down early in mTEC differentiation, and that AIRE is not required for large-scale re-patterning of chromatin in mTEC.


Subject(s)
Antigens/genetics , Chromatin/genetics , Epithelial Cells/metabolism , Gene Expression Profiling/methods , Animals , Antigens/metabolism , Cell Differentiation/genetics , Chromatin/metabolism , Histones/metabolism , Mice, Inbred C57BL , Thymocytes/metabolism , Thymus Gland/cytology , Thymus Gland/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , AIRE Protein
14.
PLoS One ; 13(6): e0198871, 2018.
Article in English | MEDLINE | ID: mdl-29949604

ABSTRACT

MicroRNAs (miRNAs) have been shown to be key modulators of post-transcriptional gene silencing in many cellular processes. In previous studies designed to understand the role of miRNAs in thymic development, we globally deleted miRNA exclusively in thymic epithelial cells (TECs), which are critical in thymic selection. This resulted in the loss of stromal cells that instruct T cell lineage commitment and affect thymocyte positive selection, required for mature T cell development. Since murine miR-181 is expressed in the thymus and miR-181 deficiency disrupts thymocyte development, we first quantified and thereby demonstrated that miR181a1 and miR181b1 are expressed in purified TECs. By generating mice with TEC targeted loss of miR-181a1 and miR-181b1 expression, we observed that neither TEC cellularity nor thymocyte number nor differentiation was adversely affected. Thus, disrupted thymopoiesis in miR-181 deficient mice was not due to miR-181 loss of expression in TECs. Importantly, in mice with restricted TEC deficiency of miR-181a1 and miR-181b1, there were similar numbers of mature T cells in the periphery in regards to frequencies, differentiation, and function as compared to controls. Moreover miR-181a1 and miR-181b1 were not required for maintenance of thymus integrity over time, as thymic involution was not accelerated in gene-targeted mice. Taken together our data indicate that miR-181a1 and miR-181b1 are dispensable for TEC differentiation, their control of thymocyte development and mature T cell export to and homeostasis within the periphery.


Subject(s)
Epithelial Cells/metabolism , Gene Expression Regulation , MicroRNAs/genetics , Thymus Gland/cytology , Thymus Gland/growth & development , Animals , Cell Differentiation , Epithelial Cells/cytology , Mice
15.
Nat Commun ; 8(1): 2109, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29235467

ABSTRACT

RNA regulatory elements (RREs) are an important yet relatively under-explored facet of gene regulation. Deciphering the prevalence and functional impact of this post-transcriptional control layer requires technologies for disrupting RREs without perturbing cellular homeostasis. Here we describe genome-engineering based evaluation of RNA regulatory element activity (GenERA), a clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 platform for in situ high-content functional analysis of RREs. We use GenERA to survey the entire regulatory landscape of a 3'UTR, and apply it in a multiplex fashion to analyse combinatorial interactions between sets of miRNA response elements (MREs), providing strong evidence for cooperative activity. We also employ this technology to probe the functionality of an entire MRE network under cellular homeostasis, and show that high-resolution analysis of the GenERA dataset can be used to extract functional features of MREs. This study provides a genome editing-based multiplex strategy for direct functional interrogation of RNA cis-regulatory elements in a native cellular environment.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , RNA/genetics , Regulatory Sequences, Nucleic Acid/genetics , 3' Untranslated Regions/genetics , Animals , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome/genetics , Humans , MicroRNAs/genetics , Response Elements/genetics
16.
Blood Adv ; 1(23): 2083-2087, 2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29296855

ABSTRACT

CDH17 is expressed in human thymic epithelial cells.CDH17 mutations may be a rare cause of leaky severe combined immune deficiency that can be corrected by HSCT.

17.
Nat Immunol ; 17(10): 1206-1215, 2016 10.
Article in English | MEDLINE | ID: mdl-27548434

ABSTRACT

Thymic epithelial cell differentiation, growth and function depend on the expression of the transcription factor Foxn1; however, its target genes have never been physically identified. Using static and inducible genetic model systems and chromatin studies, we developed a genome-wide map of direct Foxn1 target genes for postnatal thymic epithelia and defined the Foxn1 binding motif. We determined the function of Foxn1 in these cells and found that, in addition to the transcriptional control of genes involved in the attraction and lineage commitment of T cell precursors, Foxn1 regulates the expression of genes involved in antigen processing and thymocyte selection. Thus, critical events in thymic lympho-stromal cross-talk and T cell selection are indispensably choreographed by Foxn1.


Subject(s)
Epithelial Cells/physiology , Forkhead Transcription Factors/metabolism , Precursor Cells, T-Lymphoid/physiology , T-Lymphocytes/physiology , Thymus Gland/physiology , Animals , Antigen Presentation/genetics , Cell Communication , Cell Differentiation/genetics , Cell Lineage/genetics , Cells, Cultured , Clonal Selection, Antigen-Mediated/genetics , Forkhead Transcription Factors/genetics , Gene Expression Regulation , Genome/genetics , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic
18.
Clin Dev Immunol ; 2012: 467101, 2012.
Article in English | MEDLINE | ID: mdl-22474479

ABSTRACT

Primary immunodeficiencies (PIDs) are disorders of the immune system, which lead to increased susceptibility to infections. T-cell defects, which may affect T-cell development/function, are approximately 11% of reported PIDs. The pathogenic mechanisms are related to molecular alterations not only of genes selectively expressed in hematopoietic cells but also of the stromal component of the thymus that represents the primary lymphoid organ for T-cell differentiation. With this regard, the prototype of athymic disorders due to abnormal stroma is the Nude/SCID syndrome, first described in mice in 1966. In man, the DiGeorge Syndrome (DGS) has long been considered the human prototype of a severe T-cell differentiation defect. More recently, the human equivalent of the murine Nude/SCID has been described, contributing to unravel important issues of the T-cell ontogeny in humans. Both mice and human diseases are due to alterations of the FOXN1, a developmentally regulated transcription factor selectively expressed in skin and thymic epithelia.


Subject(s)
DiGeorge Syndrome/immunology , Forkhead Transcription Factors/immunology , Severe Combined Immunodeficiency/immunology , T-Lymphocytes/immunology , Animals , Cell Differentiation/immunology , DiGeorge Syndrome/genetics , DiGeorge Syndrome/pathology , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/pathology , Forkhead Transcription Factors/genetics , Humans , Mice , Mice, Nude , Mice, SCID , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/pathology , Skin/immunology , Skin/pathology , T-Lymphocytes/pathology , Thymus Gland/immunology , Thymus Gland/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...