Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Sci Rep ; 13(1): 17064, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816924

ABSTRACT

Phyllachora maydis is a fungal pathogen causing tar spot of corn (Zea mays L.), a new and emerging, yield-limiting disease in the United States. Since being first reported in Illinois and Indiana in 2015, P. maydis can now be found across much of the corn growing regions of the United States. Knowledge of the epidemiology of P. maydis is limited but could be useful in developing tar spot prediction tools. The research presented here aims to elucidate the environmental conditions necessary for the development of tar spot in the field and the creation of predictive models to anticipate future tar spot epidemics. Extended periods (30-day windowpanes) of moderate mean ambient temperature (18-23 °C) were most significant for explaining the development of tar spot. Shorter periods (14- to 21-day windowpanes) of moisture (relative humidity, dew point, number of hours with predicted leaf wetness) were negatively correlated with tar spot development. These weather variables were used to develop multiple logistic regression models, an ensembled model, and two machine learning models for the prediction of tar spot development. This work has improved the understanding of P. maydis epidemiology and provided the foundation for the development of a predictive tool for anticipating future tar spot epidemics.


Subject(s)
Plant Diseases , Zea mays , United States/epidemiology , Zea mays/microbiology , Plant Diseases/microbiology , Phyllachorales , Illinois/epidemiology
2.
ChemSusChem ; 16(5): e202201908, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36508481

ABSTRACT

Amine-based adsorbents are promising for direct air capture of CO2 , yet oxidative degradation remains a key unmitigated risk hindering wide-scale deployment. Borrowing wisdom from the basic auto-oxidation scheme, insights are gained into the underlying degradation mechanisms of polyamines by quantum chemical, advanced sampling simulations, adsorbent synthesis, and accelerated degradation experiments. The reaction kinetics of polyamines are contrasted with that of typical aliphatic polymers and they elucidate for the first time the critical role of aminoalkyl hydroperoxide decomposition in the oxidative degradation of amino-oligomers. The experimentally observed variation in oxidative stability of polyamines with different backbone structures is explained by the relationship between the local chemical structure and the free energy barrier of aminoalkyl hydroperoxide decomposition, suggesting that its energetics can be used as a descriptor to screen and design new polyamines with improved stability. The developed computational capability sheds light on radical-induced degradation chemistry of other organic functional materials.

3.
Molecules ; 27(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35268689

ABSTRACT

Dengue is a neglected disease, present mainly in tropical countries, with more than 5.2 million cases reported in 2019. Vector control remains the most effective protective measure against dengue and other arboviruses. Synthetic insecticides based on organophosphates, pyrethroids, carbamates, neonicotinoids and oxadiazines are unattractive due to their high degree of toxicity to humans, animals and the environment. Conversely, natural-product-based larvicides/insecticides, such as essential oils, present high efficiency, low environmental toxicity and can be easily scaled up for industrial processes. However, essential oils are highly complex and require modern analytical and computational approaches to streamline the identification of bioactive substances. This study combined the GC-MS spectral similarity network approach with larvicidal assays as a new strategy for the discovery of potential bioactive substances in complex biological samples, enabling the systematic and simultaneous annotation of substances in 20 essential oils through LC50 larvicidal assays. This strategy allowed rapid intuitive discovery of distribution patterns between families and metabolic classes in clusters, and the prediction of larvicidal properties of acyclic monoterpene derivatives, including citral, neral, citronellal and citronellol, and their acetate forms (LC50 < 50 µg/mL).


Subject(s)
Aedes , Insecticides , Oils, Volatile , Animals , Gas Chromatography-Mass Spectrometry , Humans , Insecticides/pharmacology , Larva , Mosquito Vectors , Oils, Volatile/pharmacology
4.
PLoS One ; 17(1): e0262600, 2022.
Article in English | MEDLINE | ID: mdl-35030224

ABSTRACT

In patients with severe forms of COVID-19, thromboelastometry has been reported to display a hypercoagulant pattern. However, an algorithm to differentiate severe COVID-19 patients from nonsevere patients and healthy controls based on thromboelastometry parameters has not been developed. Forty-one patients over 18 years of age with positive qRT-PCR for SARS-CoV-2 were classified according to the severity of the disease: nonsevere (NS, n = 20) or severe (S, n = 21). A healthy control (HC, n = 9) group was also examined. Blood samples from all participants were tested by extrinsic (EXTEM), intrinsic (INTEM), non-activated (NATEM) and functional assessment of fibrinogen (FIBTEM) assays of thromboelastometry. The thrombodynamic potential index (TPI) was also calculated. Severe COVID-19 patients exhibited a thromboelastometry profile with clear hypercoagulability, which was significantly different from the NS and HC groups. Nonsevere COVID-19 cases showed a trend to thrombotic pole. The NATEM test suggested that nonsevere and severe COVID-19 patients presented endogenous coagulation activation (reduced clotting time and clot formation time). TPI data were significantly different between the NS and S groups. The maximum clot firmness profile obtained by FIBTEM showed moderate/elevated accuracy to differentiate severe patients from NS and HC. A decision tree algorithm based on the FIBTEM-MCF profile was proposed to differentiate S from HC and NS. Thromboelastometric parameters are a useful tool to differentiate the coagulation profile of nonsevere and severe COVID-19 patients for therapeutic intervention purposes.


Subject(s)
Blood Coagulation , COVID-19/blood , Thrombelastography , Thrombophilia/blood , Adult , Aged , Algorithms , COVID-19/complications , COVID-19/diagnosis , Female , Humans , Longitudinal Studies , Male , Middle Aged , SARS-CoV-2/isolation & purification , Severity of Illness Index , Thrombophilia/diagnosis , Thrombophilia/etiology , Young Adult
5.
Phytopathology ; 112(4): 794-802, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34491794

ABSTRACT

Fusarium graminearum is the main causal species of Fusarium head blight (FHB) globally. Recent changes in the trichothecene (toxin) types in the North American FHB pathogens support the need for continued surveillance. In this study, 461 isolates were obtained from symptomatic spikes of wheat, spelt, barley, and rye crops during 2018 and 2019. These were all identified to species and toxin types using molecular-based approaches. An additional set of 77 F. graminearum isolates obtained from overwintering crop residues during winter 2012 were molecularly identified to toxin types. A subset of 31 F. graminearum isolates (15 15-acetyl-deoxynivalenol [15ADON] and 16 3-acetyl-deoxynivalenol [3ADON]) were assessed for mycelial growth, macroconidia, perithecia, and ascospore production, and sensitivity to two triazoles. Ninety percent of isolates obtained from the symptomatic spikes (n = 418) belonged to F. graminearum, with four other species found at a lower frequency (n = 39). The F. graminearum isolates from symptomatic spikes were mainly of the 15ADON (95%), followed by 3ADON (4%), nivalenol (0.7%), and NX-2 (0.3%) toxin types. All F. graminearum isolates obtained from overwintering residue were of the 15ADON type. The toxin types could not be differentiated based on the multivariate analysis of growth and reproduction traits. All isolates were sensitive to tebuconazole and metconazole fungicides in vitro. This study confirms the dominance of F. graminearum and suggests ecological and environmental factors, to be further identified, that lead to similar composition of toxin types in the northern United States. Our results may be useful to assess the sustainability of FHB management practices and provide a baseline for future FHB surveys.


Subject(s)
Fusarium , Fusarium/genetics , Genotype , Pennsylvania , Plant Diseases , Spores, Fungal , Triazoles/pharmacology , Triticum
6.
Phytopathology ; 112(4): 741-751, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34491796

ABSTRACT

Fusarium graminearum is ranked among the five most destructive fungal pathogens that affect agroecosystems. It causes floral diseases in small grain cereals including wheat, barley, and oats, as well as maize and rice. We conducted a systematic review of peer-reviewed studies reporting species within the F. graminearum species complex (FGSC) and created two main data tables. The first contained summarized data from the articles including bibliographic, geographic, methodological (ID methods), host of origin and species, while the second data table contains information about the described strains such as publication, isolate code(s), host/substrate, year of isolation, geographical coordinates, species and trichothecene genotype. Analyses of the bibliographic data obtained from 123 publications from 2000 to 2021 by 498 unique authors and published in 40 journals are summarized. We describe the frequency of species and chemotypes for 16,274 strains for which geographical information was available, either provided as raw data or extracted from the publications, and sampled across six continents and 32 countries. The database and interactive interface are publicly available, allowing for searches, summarization, and mapping of strains according to several criteria including article, country, host, species and trichothecene genotype. The database will be updated as new articles are published and should be useful for guiding future surveys and exploring factors associated with species distribution such as climate and land use. Authors are encouraged to submit data at the strain level to the database, which is accessible at https://fgsc.netlify.app.


Subject(s)
Fusarium , Trichothecenes , Edible Grain/microbiology , Fusarium/genetics , Plant Diseases/microbiology
7.
Nat Mater ; 20(11): 1498-1505, 2021 11.
Article in English | MEDLINE | ID: mdl-34697430

ABSTRACT

Porous materials with engineered stretching-dominated lattice designs, which offer attractive mechanical properties with ultra-light weight and large surface area for wide-ranging applications, have recently achieved near-ideal linear scaling between stiffness and density. Here, rather than optimizing the microlattice topology, we explore a different approach to strengthen low-density structural materials by designing tube-in-tube beam structures. We develop a process to transform fully dense, three-dimensional printed polymeric beams into graphitic carbon hollow tube-in-tube sandwich morphologies, where, similar to grass stems, the inner and outer tubes are connected through a network of struts. Compression tests and computational modelling show that this change in beam morphology dramatically slows down the decrease in stiffness with decreasing density. In situ pillar compression experiments further demonstrate large deformation recovery after 30-50% compression and high specific damping merit index. Our strutted tube-in-tube design opens up the space and realizes highly desirable high modulus-low density and high modulus-high damping material structures.


Subject(s)
Carbon , Graphite , Computer Simulation , Porosity , Prostheses and Implants
8.
Planta Med ; 87(12-13): 964-988, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34412146

ABSTRACT

Herbal medicines are important options for the treatment of several illnesses. Although their therapeutic applicability has been demonstrated throughout history, several concerns about their safety and efficacy are raised regularly. Quality control of articles of botanical origin, including plant materials, plant extracts, and herbal medicines, remains a challenge. Traditionally, qualitative (e.g., identification and chromatographic profile) and quantitative (e.g., content analyses) markers are applied for this purpose. The compound-oriented approach may stand alone in some cases (e.g., atropine in Atropa belladonna). However, for most plant materials, plant extracts, and herbal medicines, it is not possible to assure quality based only on the content or presence/absence of one (sometimes randomly selected) compound. In this sense, pattern-oriented approaches have been extensively studied, introducing the use of multivariate data analysis on chromatographic/spectroscopic fingerprints. The use of genetic methods for plant material/plant extract authentication has also been proposed. In this study, traditional approaches are reviewed, although the focus is on the applicability of fingerprints for quality control, highlighting the most used approaches, as well as demonstrating their usefulness. The literature review shows that a pattern-oriented approach may be successfully applied to the quality assessment of articles of botanical origin, while also providing directions for a compound-oriented approach and a rational marker selection. These observations indicate that it may be worth considering to include fingerprints and their data analysis in the regulatory framework for herbal medicines concerning quality control since this is the foundation of the holistic view that these complex products demand.


Subject(s)
Plants, Medicinal , Chromatography , Multivariate Analysis , Plant Extracts , Quality Control
9.
Nature ; 595(7865): 58-65, 2021 07.
Article in English | MEDLINE | ID: mdl-34194019

ABSTRACT

The natural world provides many examples of multiphase transport and reaction processes that have been optimized by evolution. These phenomena take place at multiple length and time scales and typically include gas-liquid-solid interfaces and capillary phenomena in porous media1,2. Many biological and living systems have evolved to optimize fluidic transport. However, living things are exceptionally complex and very difficult to replicate3-5, and human-made microfluidic devices (which are typically planar and enclosed) are highly limited for multiphase process engineering6-8. Here we introduce the concept of cellular fluidics: a platform of unit-cell-based, three-dimensional structures-enabled by emerging 3D printing methods9,10-for the deterministic control of multiphase flow, transport and reaction processes. We show that flow in these structures can be 'programmed' through architected design of cell type, size and relative density. We demonstrate gas-liquid transport processes such as transpiration and absorption, using evaporative cooling and CO2 capture as examples. We design and demonstrate preferential liquid and gas transport pathways in three-dimensional cellular fluidic devices with capillary-driven and actively pumped liquid flow, and present examples of selective metallization of pre-programmed patterns. Our results show that the design and fabrication of architected cellular materials, coupled with analytical and numerical predictions of steady-state and dynamic behaviour of multiphase interfaces, provide deterministic control of fluidic transport in three dimensions. Cellular fluidics may transform the design space for spatial and temporal control of multiphase transport and reaction processes.


Subject(s)
Cells/metabolism , Microfluidics/instrumentation , Microfluidics/methods , Absorption, Physicochemical , Carbon Dioxide/metabolism , Gases/metabolism , Nutrients/metabolism , Oxygen/metabolism , Plant Transpiration , Videodisc Recording , Water/metabolism
10.
Mol Biol Evol ; 38(11): 4987-4991, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34320647

ABSTRACT

Phylogenetic reconstruction and species delimitation are often challenging in the case of recent evolutionary radiations, especially when postspeciation gene flow is present. Leopardus is a Neotropical cat genus that has a long history of recalcitrant taxonomic problems, along with both ancient and current episodes of interspecies admixture. Here, we employ genome-wide SNP data from all presently recognized Leopardus species, including several individuals from the tigrina complex (representing Leopardus guttulus and two distinct populations of Leopardus tigrinus), to investigate the evolutionary history of this genus. Our results reveal that the tigrina complex is paraphyletic, containing at least three distinct species. While one can be assigned to L. guttulus, the other two remain uncertain regarding their taxonomic assignment. Our findings indicate that the "tigrina" morphology may be plesiomorphic within this group, which has led to a longstanding taxonomic trend of lumping these poorly known felids into a single species.


Subject(s)
Felidae , Polymorphism, Single Nucleotide , Animals , Felidae/genetics , Gene Flow , Genome , Phylogeny
11.
ACS Appl Mater Interfaces ; 13(20): 23567-23574, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33979129

ABSTRACT

Understanding sorption in porous carbon electrodes is crucial to many environmental and energy technologies, such as capacitive deionization (CDI), supercapacitor energy storage, and activated carbon filters. In each of these examples, a practical model that can describe ion electrosorption kinetics is highly desirable for accelerating material design. Here, we proposed a multiscale model to study the ion electrosorption kinetics in porous carbon electrodes by combining quantum mechanical simulations with continuum approaches. Our model integrates the Butler-Volmer (BV) equation for sorption kinetics and a continuously stirred tank reactor (CSTR) formulation with atomistic calculations of ion hydration and ion-pore interactions based on density functional theory (DFT). We validated our model experimentally by using ion mixtures in a flow-through electrode CDI device and developed an in-line UV absorption system to provide unprecedented resolution of individual ions in the separation process. We showed that the multiscale model captures unexpected experimental phenomena that cannot be explained by the traditional ion electrosorption theory. The proposed multiscale framework provides a viable approach for modeling separation processes in systems where pore sizes and ion hydration effects strongly influence the sorption kinetics, which can be leveraged to explore possible strategies for improving carbon-based and, more broadly, pore-based technologies.

12.
J Am Chem Soc ; 143(16): 6037-6042, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33821637

ABSTRACT

The electrocatalytic properties of some endohedral fullerenes for hydrogen evolution reactions (HER) were recently predicted by DFT calculations. Nonetheless, the experimental catalytic performance under realistic electrochemical environments of these 0D-nanomaterials have not been explored. Here, for the first time, we disclose the HER electrocatalytic behavior of seven M3N@2n (2n = 68, 78, and 80) fullerenes (Gd3N@Ih(7)-C80, Y3N@Ih(7)-C80, Lu3N@Ih(7)-C80, Sc3N@Ih(7)-C80, Sc3N@D5h(6)-C80, Sc3N@D3h(5)-C78, and Sc3N@D3(6140)-C68) using a combination of experimental and theoretical techniques. The non-IPR Sc3N@D3(6140)-C68 compound exhibited the best catalytic performance toward the generation of molecular hydrogen, exhibiting an onset potential of -38 mV vs RHE, a very high mass activity of 1.75 A·mg-1 at -0.4 V vs RHE, and an excellent electrochemical stability, retaining 96% of the initial current after 24 h. The superior performance was explained on the basis of the fused pentagon rings, which represent a new and promising HER catalytic motif.

13.
Int J Obes (Lond) ; 45(5): 1017-1029, 2021 05.
Article in English | MEDLINE | ID: mdl-33633342

ABSTRACT

BACKGROUND/OBJECTIVES: Admixed populations are a resource to study the global genetic architecture of complex phenotypes, which is critical, considering that non-European populations are severely underrepresented in genomic studies. Here, we study the genetic architecture of BMI in children, young adults, and elderly individuals from the admixed population of Brazil. SUBJECTS/METHODS: Leveraging admixture in Brazilians, whose chromosomes are mosaics of fragments of Native American, European, and African origins, we used genome-wide data to perform admixture mapping/fine-mapping of body mass index (BMI) in three Brazilian population-based cohorts from Northeast (Salvador), Southeast (Bambuí), and South (Pelotas). RESULTS: We found significant associations with African-associated alleles in children from Salvador (PALD1 and ZMIZ1 genes), and in young adults from Pelotas (NOD2 and MTUS2 genes). More importantly, in Pelotas, rs114066381, mapped in a potential regulatory region, is significantly associated only in females (p = 2.76e-06). This variant is rare in Europeans but with frequencies of ~3% in West Africa and has a strong female-specific effect (95% CI: 2.32-5.65 kg/m2 per each A allele). We confirmed this sex-specific association and replicated its strong effect for an adjusted fat mass index in the same Pelotas cohort, and for BMI in another Brazilian cohort from São Paulo (Southeast Brazil). A meta-analysis confirmed the significant association. Remarkably, we observed that while the frequency of rs114066381-A allele ranges from 0.8 to 2.1% in the studied populations, it attains ~9% among women with morbid obesity from Pelotas, São Paulo, and Bambuí. The effect size of rs114066381 is at least five times higher than the FTO SNPs rs9939609 and rs1558902, already emblematic for their high effects. CONCLUSIONS: We identified six candidate SNPs associated with BMI. rs114066381 stands out for its high effect that was replicated and its high frequency in women with morbid obesity. We demonstrate how admixed populations are a source of new relevant phenotype-associated genetic variants.


Subject(s)
Body Mass Index , Genetics, Population , Polymorphism, Single Nucleotide , Aged , Aged, 80 and over , Alleles , Brazil , Child , Child, Preschool , Chromosome Mapping , Female , Humans , Male , Middle Aged , Phenotype , Regulatory Sequences, Nucleic Acid , Sex Factors , Young Adult
15.
Nanoscale ; 12(39): 20292-20299, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33001104

ABSTRACT

Understanding ion transport in porous carbons is critical for a wide range of technologies, including supercapacitors and capacitive deionization for water desalination, yet many details remain poorly understood. For instance, an atomistic understanding of how ion selectivity is influenced by the molecular shape of ions, morphology of the micropores and applied voltages is largely lacking. In this work, we combined molecular dynamics simulations with enhanced sampling methods to elucidate the mechanism of nitrate and chloride selectivity in subnanometer graphene slit-pores. We show that nitrate is preferentially adsorbed over chloride in the slit-like micropores. This preferential adsorption was found to stem from the weaker hydration energy and unique anisotropy of the ion solvation of nitrate. Beside the effects of ion dehydration, we found that applied potential plays an important role in determining the ion selectivity, leading to a lower selectivity of nitrate over chloride at a high applied potential. We conclude that the measured ion selectivity results from a complex interplay between voltage, confinement, and specific ion effects-including ion shape and local hydration structure.

16.
NPJ Genom Med ; 5: 42, 2020.
Article in English | MEDLINE | ID: mdl-33083011

ABSTRACT

The development of precision medicine strategies requires prior knowledge of the genetic background of the target population. However, despite the availability of data from admixed Americans within large reference population databases, we cannot use these data as a surrogate for that of the Brazilian population. This lack of transferability is mainly due to differences between ancestry proportions of Brazilian and other admixed American populations. To address the issue, a coalition of research centres created the Brazilian Initiative on Precision Medicine (BIPMed). In this study, we aim to characterise two datasets obtained from 358 individuals from the BIPMed using two different platforms: whole-exome sequencing (WES) and a single nucleotide polymorphism (SNP) array. We estimated allele frequencies and variant pathogenicity values from the two datasets and compared our results using the BIPMed dataset with other public databases. Here, we show that the BIPMed WES dataset contains variants not included in dbSNP, including 6480 variants that have alternative allele frequencies (AAFs) >1%. Furthermore, after merging BIPMed WES and SNP array data, we identified 809,589 variants (47.5%) not present within the 1000 Genomes dataset. Our results demonstrate that, through the incorporation of Brazilian individuals into public genomic databases, BIPMed not only was able to provide valuable knowledge needed for the implementation of precision medicine but may also enhance our understanding of human genome variability and the relationship between genetic variation and disease predisposition.

17.
ACS Appl Mater Interfaces ; 12(38): 42644-42652, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32869974

ABSTRACT

Capacitive deionization (CDI) is a promising water desalination technology that is applicable to the treatment of low-salinity brackish waters and the selective removal of ionic contaminants. In this work, we show that by making a small change in the synthetic procedure of hierarchical carbon aerogel monolith (HCAM) electrodes, we can adjust the pore-size distribution and tailor the selectivity, effectively switching between selective adsorption of calcium or sodium ions. Ion selectivity was measured for a mixture of 5 mM NaCl and 2.5 mM CaCl2. For the low activated flow-through CDI (fteCDI) cell, we observed extremely high sodium selectivity over calcium (SNa/Ca ≫ 10, no Ca2+ adsorbed) at all of the applied potentials, while for the highly activated fteCDI cell, we observed a selectivity value of 6.6 ± 0.8 at 0.6 V for calcium over sodium that decreased to 2.2 ± 0.03 at 1.2 V. Molecular dynamics simulations indicated that the loss in Ca2+ selectivity over Na+ at high applied voltages could be due to a competition between ion-pore electrostatic interactions and volume exclusion ("crowding") effects. Interestingly, we also find with these simulations that the relative sizes of the ions change due to changes in hydration at a higher voltage.

18.
Nutr. hosp ; 37(4): 730-741, jul.-ago. 2020. graf
Article in Spanish | IBECS | ID: ibc-201686

ABSTRACT

INTRODUCCIÓN: las plantas medicinales han mostrado tener aplicaciones terapéuticas en el tratamiento de diferentes enfermedades, entre ellas las enfermedades crónicas degenerativas presentes en el síndrome metabólico (SM). OBJETIVOS: evaluar el efecto en el control del peso, así como el efecto antihipertensivo, antihiperglucémico y antioxidante, de extractos acuosos y etanólicos de hojas y tallos de Stevia rebaudiana, variedad criolla INIFAP C01, producidas en los municipios de Muna y Mocochá (Yucatán, México). MÉTODOS: se administraron por vía oral extractos acuosos y etanólicos de hojas (HAMU y HEMU, respectivamente) y tallos procedentes de Muna (TAMU y TEMU, respectivamente), así como extractos acuosos y etanólicos de hojas (HAMO y HEMO, respectivamente) y tallos de Mocochá (TAMO y TEMO, respectivamente), a ratas Wistar macho en las que se indujo un SM. Se registraron los pesos y se midieron los niveles de presión arterial (PA) y glucosa en sangre, así como los niveles de malondialdehído (MDA) y superóxido-dismutasa (SOD) en plasma sanguíneo. RESULTADOS: TAMU y HAMO mostraron porcentajes de reducción del peso del 1,91 % y 1,57 %, respectivamente. HEMU y HAMU mostraron porcentajes de reducción de la presión arterial sistólica (PAS) y diastólica (PAD) del 30,47-29,31 % y 36,98-36,69 %, respectivamente. En el test de tolerancia oral a la glucosa (TTOG), HEMU mostró porcentajes de reducción de la glucosa sanguínea del 10,94 % en el día uno y del 14,83 % en el día 30. TEMO y TAMO mostraron una menor concentración de MDA, de 7,0 y 7,3 μM, respectivamente, y HEMU y TEMU mostraron una mayor concentración de SOD, de 1,29 y 1,12 U/mL, respectivamente. CONCLUSIONES: los extractos de S. rebaudiana pueden ayudar a controlar el aumento de peso, disminuir las cifras de presión arterial y la incidencia de diabetes, y reducir el daño oxidativo


INTRODUCTION: medicinal plants have demonstrated therapeutic applications for treating different diseases, including chronic and degenerative diseases associated with metabolic syndrome. OBJECTIVES: to assess the weight control and the antihypertensive, antihyperglycemic and antioxidant effects of aqueous and ethanolic extracts of Stevia rebaudiana (creole variety INIFAP C01) leaves and stems cultivated in the Muna and Mocochá municipalities (Yucatán, México). METHODS: aqueous and ethanolic extracts of leaves (HAMU and HEMU, respectively) and stems (TAMU and TEMU, respectively) from Muna, and aqueous and ethanolic extracts of leaves (HAMO and HEMO, respectively) and stems (TAMO and TEMO, respectively) from Mocochá were orally administered to Wistar male rats induced to metabolic syndrome. Weight, blood pressure, blood sugar levels, malondialdehyde (MDA) levels, and superoxide dismutase (SOD) levels in blood plasma were measured. RESULTS: TAMU and HAMO samples reduced weight by 1.91 % and 1.57 %, respectively. On the other hand, HEMU and HAMU samples reduced systolic (PAS) and diastolic (PAD) blood pressure levels by 29.31-30.47 % and 36.69-36.98 %. In the glucose tolerance test (GTT) HEMU showed a reduction in blood sugar levels of 10.94 % on the first day, and of 14.83 % on day 30. TEMO and TAMO samples showed lower malondialdehyde (MDA) concentrations of 7.0 and 7.3 μM, respectively. HEMU and TEMU showed a higher superoxide dismutase (SOD) concentration of 1.29 and 1.12 U/mL, respectively. CONCLUSIONS: extracts of S. rebaudiana can help to control weight gain, to decrease blood pressure and the incidence of diabetes, and to reduce oxidative damage


Subject(s)
Animals , Rats , Stevia/chemistry , Antihypertensive Agents/therapeutic use , Antioxidants/therapeutic use , Metabolic Syndrome/drug therapy , Disease Models, Animal , Time Factors , Rats, Wistar
19.
Neurochem Res ; 45(10): 2278-2285, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32676948

ABSTRACT

Neurodegenerative diseases (ND) affect around a billion people worldwide. Oxidative stress plays a critical role in the activation of neuronal death mechanisms, implicated in the ND etiology. In the present research, the neuroprotective effect of the S. hispanica protein derivatives is evaluated, on neuronal cells N1E-115, after the damage induction with H2O2. From the protein-rich fraction of S. hispanica, three peptide fractions were obtained (3-5, 1-3 y < 1 kDa) and its neuroprotective effect on neuronal cells N1E-115 was evaluated, through the antioxidant pathway. In the toxicity assay, the peptide fractions showed viability greater than 90%. When N1E-115 cells were incubated with 100 µM H2O2, fractions 1-3 and < 1 kDa, presented cell viability of 66.64% ± 3.2 and 67.32% ± 2.8, respectively. Fractions 1-3 and < 1 kDa reduced by 41.73% ± 3.2 and 40.87% ± 2.8, respectively, the ROS production compared to the control, without significant statistical difference between both fractions (p < 0.05), while F3-5 kDa, only reduced the ROS production by 21.95% ± 2.4. The protective effect observed in the < 3 kDa fractions could be associated with its antioxidant activity, which represents an important study target.


Subject(s)
Hydrogen Peroxide/pharmacology , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Protein Hydrolysates/pharmacology , Salvia/chemistry , Animals , Cell Line, Tumor , Free Radical Scavengers/pharmacology , Mice
20.
Environ Sci Technol ; 54(11): 6900-6907, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32374592

ABSTRACT

We have developed a new class of sodium carbonate/silicone composite sorbents that selectively capture carbon dioxide (CO2) and can purify biogas to natural gas pipeline-quality biomethane. These nontoxic composites can be three-dimensionally printed or extruded at low costs, can have high specific CO2 sorption rates (in excess of 5 µmol s-1 g-1 bar-1) and high selectivity due to their chemical mechanism, and can be regenerated with low-energy air stripping. Therefore, these composite sorbents combine the high selectivity of liquid sorbents with the high specific sorption rates and low regeneration energies found in many solid sorbents. We characterized these composite sorbents with X-ray computed tomography, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Furthermore, we measured composite sorption capacities of up to 0.62 mol CO2 kg-1 and recorded breakthrough curves in a flow-through, fixed-bed reactor using both simulated biogas and locally sourced industrial biogas. Additional tests of the composite sorbent were carried out with pure CO2 in a sealed pressure drop apparatus. This experimental data was used to validate a numerical model of the setup and to simulate an industrial-scale biogas upgrading process. Finally, we performed a preliminary technoeconomic analysis for this upgrading process and found that this composite sorbent can upgrade biogas at a lower cost (∼$0.97 per GJ) than other currently implemented techniques.


Subject(s)
Biofuels , Carbonates , Carbon Dioxide , Natural Gas
SELECTION OF CITATIONS
SEARCH DETAIL
...