Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 21(4): 1417-1426, 2020 04 13.
Article in English | MEDLINE | ID: mdl-32109357

ABSTRACT

We show here how the structure of polygalacturonate (polyGalA) hydrogels cross-linked by Ca2+ cations via external gelation controls the loading and release rate of beta-lactoglobulin (BLG), a globular protein. Hydrogels prepared from a polyGalA/BLG solution are found to be similar to those obtained from a polyGalA solution in our previous study (Maire du Poset et al. Biomacromolecules 2019, 20 (7), 2864-2872): they exhibit similar transparencies and gradients of mechanical properties and polyGalA concentrations. The nominal BLG/polyGalA ratio of the mixtures is almost recovered within the whole mixed hydrogel despite such strong concentration gradients, except in the part of the hydrogels with the largest mesh size, where more BLG proteins are present. This gradient enables one to tune the amount of protein loaded within the hydrogel. At a local scale, the proteins are distributed evenly within the hydrogel network, as shown by small-angle neutron scattering (SANS). The release of proteins from hydrogels is driven by Fickian diffusion, and the release rate increases with the mesh size of the network, with a characteristic time of a few hours. The specific structure of these polysaccharide-based hydrogels allows for control of both the dosage and the release rate of the loaded protein and makes them good candidates for use as oral controlled-delivery systems.


Subject(s)
Hydrogels , Lactoglobulins , Calcium , Diffusion , Scattering, Small Angle
2.
Phys Chem Chem Phys ; 22(5): 2963-2977, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-31956870

ABSTRACT

The local structure of Fe2+ in Fe2+-polygalacturonic acid (polyGalA) hydrogels has been studied by coupling Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy and molecular dynamics (MD) simulation. The EXAFS fitting results reveal an octahedral coordination geometry of Fe2+ both in aqueous solution and in the hydrogel, with similar Fe-O distances (2.09 ± 0.01 Å in the hydrogel and 2.11 ± 0.01 Å in aqueous solution). The MD simulations evidence that standard empirical force fields are unable to accurately reproduce the EXAFS spectra of Fe2+ in both aqueous solution and hydrogel. Based on the EXAFS distance determinations, we then performed restrained MD simulations of hypothetical octahedral coordination modes of Fe2+ with polyGalA chains. The best agreement between experimental and simulated EXAFS spectra was found when Fe2+ is monodentately coordinated to two carboxylate and two hydroxyl oxygens from a pair of polyGalA chains as well as to two water oxygens in an octahedral coordination geometry compatible with the "egg-box model".

3.
Biomacromolecules ; 20(7): 2864-2872, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31180649

ABSTRACT

We show here how the nature of various divalent cations M2+ (Ca2+, Zn2+, or Fe2+) influences the structure and mechanical properties of ionotropic polygalacturonate (polyGal) hydrogels designed by the diffusion of cations along one direction (external gelation). All hydrogels exhibit strong gradients of polyGal and cation concentrations, which are similar for all studied cations with a constant ratio R = [M2+]/[Gal] equal to 0.25, showing that every M2+ cation interacts with four galacturonate (Gal) units all along the gels. The regions of the hydrogels formed in the early stages of the gelation process are also similar for all cations and are homogeneous, with the same characteristic mesh size (75 ± 5 Å, as measured by small angle neutron scattering (SANS)) and the same storage modulus G' (∼5 × 104 Pa). Conversely, in the regions of the gels formed in later stages of the process there exist differences in mechanical properties, turbidity, and local structure from one cation to another. Zn(II)-polyGal and Fe(II)-polyGal hydrogels display mesoscopic heterogeneities, more marked in case of Fe than for Zn, that are not present in Ca(II)-polyGal hydrogels. This comes from the mode and the strength of association between the cation and the Gal unit (bidentate for Ca2+ and monodentate "egg-box" for Zn2+ and Fe2+). Cross-links formed by Zn2+ and Fe2+ have a higher stability (lower ability to untie and reform) that induces the formation of local heterogeneities in the early stages of the gelation process whose size progressively increases during the gel growth, a mechanism that does not occur for cross-links made by Ca2+ that are less stable and enable possible reorganizations between polyGal chains.


Subject(s)
Colloids/chemistry , Hexuronic Acids/chemistry , Hydrogels/chemistry , Calcium/chemistry , Cations/chemistry , Cross-Linking Reagents/chemistry , Iron/chemistry , Zinc/chemistry
4.
Carbohydr Polym ; 188: 276-283, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29525167

ABSTRACT

We designed stable and highly reproducible hydrogels by external unidirectional diffusion of Fe2+ ions into aqueous solutions of polygalacturonate (polyGal) chains. The Fe2+ ions act as cross-linkers between the Gal units in such a way that both the molar ratio R ([Fe2+]/[Gal units] = 0.25) and the mesh size of the polyGal network at the local scale (ξ = 75 ±â€¯5 Å) have constant values within the whole gel, as respectively determined by titration and Small Angle Neutron Scattering. From macroscopic point of view, there is a progressive decrease of polyGal concentration from the part of the gel formed in the early stages of the gelation process, which is homogeneous, transparent and whose Young modulus has a high value of ∼105 Pa, up to the part of the gel formed in the late stages, which is heterogeneous, highly turbid and has a much lower Young modulus of ∼103 Pa. Since the local organization of the polyGal chains remains identical all along the hydrogels, this macroscopic concentration gradient originates from the formation of heterogeneities at a mesoscopic length scale during the gelation process. In addition, X-ray Absorption Spectroscopy measurements remarkably reveal that Fe2+ ions keep their +II oxidation state in the whole gels once they have cross-linked the Gal units. These polyGal hydrogels thus protect iron against oxidation and could be used for iron fortification.


Subject(s)
Ferrous Compounds/chemistry , Hydrogels/chemistry , Iron/chemistry , Pectins/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...