Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Microb Cell Fact ; 22(1): 242, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017439

ABSTRACT

Plasmid DNA (pDNA) is a key biotechnological product whose importance became apparent in the last years due to its role as a raw material in the messenger ribonucleic acid (mRNA) vaccine manufacturing process. In pharmaceutical production processes, cells need to grow in the defined medium in order to guarantee the highest standards of quality and repeatability. However, often these requirements result in low product titer, productivity, and yield. In this study, we used constraint-based metabolic modeling to optimize the average volumetric productivity of pDNA production in a fed-batch process. We identified a set of 13 nutrients in the growth medium that are essential for cell growth but not for pDNA replication. When these nutrients are depleted in the medium, cell growth is stalled and pDNA production is increased, raising the specific and volumetric yield and productivity. To exploit this effect we designed a three-stage process (1. batch, 2. fed-batch with cell growth, 3. fed-batch without cell growth). The transition between stage 2 and 3 is induced by sulfate starvation. Its onset can be easily controlled via the initial concentration of sulfate in the medium. We validated the decoupling behavior of sulfate and assessed pDNA quality attributes (supercoiled pDNA content) in E. coli with lab-scale bioreactor cultivations. The results showed an increase in supercoiled pDNA to biomass yield by 33% and an increase of supercoiled pDNA volumetric productivity by 13 % upon limitation of sulfate. In conclusion, even for routinely manufactured biotechnological products such as pDNA, simple changes in the growth medium can significantly improve the yield and quality.


Subject(s)
Escherichia coli , Sulfates , Escherichia coli/metabolism , Sulfates/metabolism , Plasmids/genetics , Bioreactors , DNA/metabolism
2.
ACS Omega ; 8(17): 15406-15421, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37151527

ABSTRACT

In recent years, receptor-mediated drug delivery has gained major attention in the treatment of cancer. The pathogen-derived Shiga Toxin B subunit (STxB) can be used as a carrier that detects the tumor-associated glycosphingolipid globotriaosylceramide (Gb3) receptors. While drug conjugation via lysine or cysteine offers random drug attachment to carriers, click chemistry has the potential to improve the engineering of delivery systems as the site specificity can eliminate interference with the active binding site of tumor ligands. We present the production of recombinant STxB in its wild-type (STxBwt) version or incorporating the noncanonical amino acid azido lysine (STxBAzK). The STxBwt and STxBAzK were manufactured using a growth-decoupled Escherichia coli (E. coli)-based expression strain and analyzed via flow cytometry for Gb3 receptor recognition and specificity on two human colorectal adenocarcinoma cell lines-HT-29 and LS-174-characterized by high and low Gb3 abundance, respectively. Furthermore, STxBAzK was clicked to the antineoplastic agent monomethyl auristatin E (MMAE) and evaluated in cell-killing assays for its ability to deliver the drug to Gb3-expressing tumor cells. The STxBAzK-MMAE conjugate induced uptake and release of the MMAE drug in Gb3-positive tumor cells, reaching 94% of HT-29 cell elimination at 72 h post-treatment and low nanomolar doses while sparing LS-174 cells. STxBAzK is therefore presented as a well-functioning drug carrier, with a possible application in cancer therapy. This research demonstrates the feasibility of lectin carriers used in delivering drugs to tumor cells, with prospects for improved cancer therapy in terms of straightforward drug attachment and effective cancer cell elimination.

3.
Toxins (Basel) ; 14(6)2022 06 08.
Article in English | MEDLINE | ID: mdl-35737057

ABSTRACT

Non-toxic derivatives of the cholera toxin are extensively used in neuroscience, as neuronal tracers to reveal the location of cells in the central nervous system. They are, also, being developed as vaccine components and drug-delivery vehicles. Production of cholera-toxin derivatives is often non-reproducible; the quality and quantity require extensive fine-tuning to produce them in lab-scale settings. In our studies, we seek a resolution to this problem, by expanding the molecular toolbox of the Escherichia coli expression system with suitable production, purification, and offline analytics, to critically assess the quality of a probe or drug delivery, based on a non-toxic derivative of the cholera toxin. We present a re-engineered Cholera Toxin Complex (rCTC), wherein its toxic A1 domain was replaced with Maltose Binding Protein (MBP), as a model for an rCTC-based targeted-delivery vehicle. Here, we were able to improve the rCTC production by 11-fold (168 mg/L vs. 15 mg/L), in comparison to a host/vector combination that has been previously used (BL21(DE3) pTRBAB5-G1S). This 11-fold increase in the rCTC production capability was achieved by (1) substantial vector backbone modifications, (2) using Escherichia coli strains capable of growth-decoupling (V strains), (3) implementing a well-tuned fed-batch production protocol at a 1 L scale, and (4) testing the stability of the purified product. By an in-depth characterization of the production process, we revealed that secretion of rCTC across the E. coli Outer Membrane (OM) is processed by the Type II secretion-system general secretory pathway (gsp-operon) and that cholera toxin B-pentamerization is, likely, the rate-limiting step in complex formation. Upon successful manufacturing, we have validated the biological activity of rCTC, by measuring its binding affinity to its carbohydrate receptor GM1 oligosaccharide (Kd = 40 nM), or binding to Jurkat cells (93 pM) and delivering the cargo (MBP) in a retrograde fashion to the cell.


Subject(s)
Cholera Toxin , Cholera Toxin/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Humans
4.
Biotechnol Adv ; 59: 107951, 2022 10.
Article in English | MEDLINE | ID: mdl-35398203

ABSTRACT

Glycan-recognizing toxins play a significant role in the etiology of many diseases afflicting humanity. The carbohydrate recognition domains of these toxins play essential roles in the virulence of many microbial organisms with multiple modes of action, from promoting pore formation to facilitating the entry of toxic enzymatic subunits into the host cell. Carbohydrate-binding domains with an affinity for specific glycan-based receptors can also be exploited for various applications, including detecting glycobiomarkers, as drug delivery systems, and new generation biopharmaceutical products and devices (e.g. glycoselective capture of tumor-derived exosomes). Therefore, understanding how to efficiently express and purify recombinant toxins and their carbohydrate-binding domains can enable opportunities for the formulation of innovative biopharmaceuticals that can improve human health. Here, we provide an overview of carbohydrate-binding toxins in the context of biotechnological innovation. We review 1) structural characteristics concerning the toxins' mode of action; 2) applications and therapeutic design with a particular emphasis on exploiting carbohydrate-binding toxins for production of anti-tumor biopharmaceuticals; discuss 3) possible ways to manufacture those molecules at a bioreactor scale using microbial expression systems, and 4) their purification using their affinity for glycans.


Subject(s)
Bacterial Toxins , Biological Products , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Carbohydrates , Humans , Polysaccharides/chemistry
5.
Biotechnol J ; 17(5): e2100577, 2022 May.
Article in English | MEDLINE | ID: mdl-35085417

ABSTRACT

BACKGROUND: The secretion and direct capture of proteins from the extracellular medium is a promising approach for purification, thus enabling integrated bioprocesses. MAJOR RESULTS: We demonstrate the secretion of a nanobody (VHH) to the extracellular medium (EM) and its direct capture by bare, non-functionalized magnetic nanoparticles (MNPs). An ompA signal peptide for periplasmic localization, a polyglutamate-tag (E8 ) for selective MNP binding, and a factor Xa protease cleavage site were fused N-terminally to the nanobody. The extracellular production of the E8 -VHH (36 mg L-1 ) was enabled using a growth-decoupled Escherichia coli-based expression system. The direct binding of E8 -VHH to the bare magnetic nanoparticles was possible and could be drastically improved up to a yield of 88% by adding polyethylene glycol (PEG). The selectivity of the polyglutamate-tag enabled a selective elution of the E8 -VHH from the bare MNPs while raising the concentration factor (5x) and purification factor (4x) significantly. CONCLUSION: Our studies clearly show that the unique combination of a growth-decoupled E. coli secretion system, the polyglutamate affinity tag, non-functionalized magnetic nanoparticles, and affinity magnetic precipitation is an innovative and novel way to capture and concentrate nanobodies.


Subject(s)
Magnetite Nanoparticles , Single-Domain Antibodies , Escherichia coli/genetics , Escherichia coli/metabolism , Magnetics , Polyglutamic Acid/metabolism
6.
Talanta ; 235: 122691, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34517577

ABSTRACT

The nucleocapsid protein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for several steps of the viral life cycle, and is abundantly expressed during infection, making it an ideal diagnostic target protein. This protein has a strong tendency for dimerization and interaction with nucleic acids. For the first time, high titers of NP were expressed in E. coli with a CASPON tag, using a growth-decoupled protein expression system. Purification was accomplished by nuclease treatment of the cell homogenate and a sequence of downstream processing (DSP) steps. An analytical method consisting of native hydrophobic interaction chromatography hyphenated to multi-angle light scattering detection (HIC-MALS) was established for in-process control, in particular, to monitor product fragmentation and multimerization throughout the purification process. 730 mg purified NP per liter of fermentation could be produced by the optimized process, corresponding to a yield of 77% after cell lysis. The HIC-MALS method was used to demonstrate that the NP product can be produced with a purity of 95%. The molecular mass of the main NP fraction is consistent with dimerized protein as was verified by a complementary native size-exclusion separation (SEC)-MALS analysis. Peptide mapping mass spectrometry and host cell specific enzyme-linked immunosorbent assay confirmed the high product purity, and the presence of a minor endogenous chaperone explained the residual impurities. The optimized HIC-MALS method enables monitoring of the product purity, and simultaneously access its molecular mass, providing orthogonal information complementary to established SEC-MALS methods. Enhanced resolving power can be achieved over SEC, attributed to the extended variables to tune selectivity in HIC mode.


Subject(s)
COVID-19 , Nucleocapsid Proteins , Chromatography , Escherichia coli/genetics , Humans , Hydrophobic and Hydrophilic Interactions , Nucleocapsid Proteins/genetics , SARS-CoV-2
7.
Microb Cell Fact ; 20(1): 27, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33522916

ABSTRACT

BACKGROUND: Precise regulation of gene expression is of utmost importance for the production of complex membrane proteins (MP), enzymes or other proteins toxic to the host cell. In this article we show that genes under control of a normally Isopropyl ß-D-1-thiogalactopyranoside (IPTG)-inducible PT7-lacO promoter can be induced solely with L-arabinose in a newly constructed Escherichia coli expression host BL21-AI, a strain based on the recently published approach of bacteriophage inspired growth-decoupled recombinant protein production. RESULTS: Here, we show that BL21-AI is able to precisely regulate protein production rates on a cellular level in an L-arabinose concentration-dependent manner and simultaneously allows for reallocation of metabolic resources due to L-arabinose induced growth decoupling by the phage derived inhibitor peptide Gp2. We have successfully characterized the system under relevant fed-batch like conditions in microscale cultivation (800 µL) and generated data proofing a relevant increase in specific yields for 6 different Escherichia coli derived MP-GFP fusion proteins by using online-GFP signals, FACS analysis, SDS-PAGE and western blotting. CONCLUSIONS: In all cases tested, BL21-AI outperformed the parental strain BL21-AI, operated in growth-associated production mode. Specific MP-GFP fusion proteins yields have been improved up to 2.7-fold. Therefore, this approach allows for fine tuning of MP production or expression of multi-enzyme pathways where e.g. particular stoichiometries have to be met to optimize product flux.


Subject(s)
Arabinose/pharmacology , Bacteriophage T7/metabolism , Escherichia coli/growth & development , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Escherichia coli/drug effects , Gene Expression Regulation, Bacterial/drug effects , Genetic Engineering , Green Fluorescent Proteins/metabolism , Isopropyl Thiogalactoside/pharmacology , Kinetics , Membrane Proteins/metabolism , Promoter Regions, Genetic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
8.
Biotechnol J ; 16(3): e2000274, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32915502

ABSTRACT

With the growing interest in continuous cultivation of Escherichia coli, secretion of product to the medium is not only a benefit, but a necessity in future bioprocessing. In this study, it is shown that induced decoupling of growth and heterologous gene expression in the E. coli X-press strain (derived from BL21(DE3)) facilitates extracellular recombinant protein production. The effect of the process parameters temperature and specific glucose consumption rate (qS ) on growth, productivity, lysis and leakiness, is investigated, to find the parameter space allowing extracellular protein production. Two model proteins are used, Protein A (SpA) and a heavy-chain single-domain antibody (VHH), and performance is compared to the industrial standard strain BL21(DE3). It is shown that inducible growth repression in the X-press strain greatly mitigates the effect of metabolic burden under different process conditions. Furthermore, temperature and qS are used to control productivity and leakiness. In the X-press strain, extracellular SpA and VHH titer reach up to 349 and 19.6 mg g-1 , respectively, comprising up to 90% of the total soluble product, while keeping cell lysis at a minimum. The findings demonstrate that the X-press strain constitutes a valuable host for extracellular production of recombinant protein with E. coli.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Culture Media , DNA-Directed RNA Polymerases/genetics , Escherichia coli/genetics , Recombinant Proteins/genetics
9.
ACS Synth Biol ; 9(11): 3052-3066, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33150786

ABSTRACT

The site-specific incorporation of noncanonical amino acids (ncAAs) into proteins by amber stop codon suppression has become a routine method in academic laboratories. This approach requires an amber suppressor tRNACUA to read the amber codon and an aminoacyl-tRNA synthetase to charge the tRNACUA with the ncAA. However, a major drawback is the low yield of the mutant protein in comparison to the wild type. This effect primarily results from the competition of release factor 1 with the charged suppressor tRNACUA for the amber codon at the A-site of the ribosome. A number of laboratories have attempted to improve the incorporation efficiency of ncAAs with moderate results. We aimed at increasing the efficiency to produce high yields of ncAA-functionalized proteins in a scalable setting for industrial application. To do this, we inserted an ncAA into the enhanced green fluorescent protein and an antibody mimetic molecule using an industrial E. coli strain, which produces recombinant proteins independent of cell growth. The controlled decoupling of recombinant protein production from cell growth considerably increased the incorporation of the ncAA, producing substantially higher protein yields versus the reference E. coli strain BL21(DE3). The target proteins were expressed at high levels, and the ncAA was efficiently incorporated with excellent fidelity while the protein function was preserved.


Subject(s)
Amino Acids/genetics , Escherichia coli/genetics , Amino Acyl-tRNA Synthetases/genetics , Codon, Terminator/genetics , Genetic Code/genetics , Protein Biosynthesis/genetics , Protein Engineering/methods , RNA, Transfer/genetics , Recombinant Proteins/genetics , Ribosomes/genetics
10.
ACS Synth Biol ; 9(6): 1336-1348, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32324989

ABSTRACT

Modulating resource allocation in bacteria to redirect metabolic building blocks to the formation of recombinant proteins rather than biomass formation remains a grand challenge in biotechnology. Here, we present a novel approach for improved recombinant protein production (RPP) using Escherichia coli (E. coli) by decoupling recombinant protein synthesis from cell growth. We show that cell division and host mRNA transcription can be successfully inhibited by coexpression of a bacteriophage-derived E. coli RNA polymerase (RNAP) inhibitor peptide and that genes overtranscribed by the orthogonal T7 RNAP can finally account to >55% of cell dry mass (CDM). This RNAP inhibitor peptide binds the E. coli RNAP and therefore prevents σ-factor 70 mediated formation of transcriptional qualified open promoter complexes. Thereby, the transcription of σ-factor 70 driven host genes is inhibited, and metabolic resources can be exclusively utilized for synthesis of the protein of interest (POI). Here, we mimic the late phase of bacteriophage infection by coexpressing a phage-derived xenogeneic regulator that reprograms the host cell and thereby are able to significantly improve RPP under industrial relevant fed-batch process conditions at bioreactor scale. We have evaluated production of several different recombinant proteins at different scales (from microscale to 20 L fed-batch scale) and have been able to improve total and soluble proteins yields up to 3.4-fold in comparison to the reference expression system E. coli BL21(DE3). This novel approach for growth-decoupled RPP has profound implications for biotechnology and bioengineering and helps to establish more cost-effective and generic manufacturing processes for biologics and biomaterials.


Subject(s)
Bacteriophages/genetics , Escherichia coli/metabolism , Recombinant Proteins/biosynthesis , Batch Cell Culture Techniques , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Genetic Engineering/methods , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Peptides/chemistry , Peptides/metabolism , Recombinant Proteins/genetics , Sigma Factor/antagonists & inhibitors , Sigma Factor/metabolism , Viral Proteins/genetics
11.
Biotechnol Bioeng ; 116(6): 1259-1268, 2019 06.
Article in English | MEDLINE | ID: mdl-30659592

ABSTRACT

Sugar nucleotide-dependent (Leloir) glycosyltransferases from plants are important catalysts for the glycosylation of small molecules and natural products. Limitations on their applicability for biocatalytic synthesis arise because of low protein expression (≤10 mg/L culture) in standard microbial hosts. Here, we showed two representative glycosyltransferases: sucrose synthase from soybean and UGT71A15 from apple. A synthetic biology-based strategy of decoupling the enzyme expression from the Escherichia coli BL21(DE3) cell growth was effective in enhancing their individual (approximately fivefold) or combined (approximately twofold) production as correctly folded, biologically active proteins. The approach entails a synthetic host cell, which is able to shut down the production of host messenger RNA by inhibition of the E. coli RNA polymerase. Overexpression of the enzyme(s) of interest is induced by the orthogonal T7 RNA polymerase. Shutting down of the host RNA polymerase is achieved by l-arabinose-inducible expression of the T7 phage-derived Gp2 protein from a genome-integrated site. The glycosyltransferase genes are encoded on conventional pET-based expression plasmids that allow T7 RNA polymerase-driven inducible expression by isopropyl-ß- d-galactoside. Laboratory batch and scaled-up (20 L) fed-batch bioreactor cultivations demonstrated improvements in an overall yield of active enzyme by up to 12-fold as a result of production under growth-decoupled conditions. In batch culture, sucrose synthase and UGT71A15 were obtained, respectively, at 115 and 2.30 U/g cell dry weight, corresponding to ∼5 and ∼1% of total intracellular protein. Fed-batch production gave sucrose synthase in a yield of 2,300 U/L of culture (830 mg protein/L). Analyzing the isolated glycosyltransferase, we showed that the improvement in the enzyme production was due to the enhancement of both yield (5.3-fold) and quality (2.3-fold) of the soluble sucrose synthase. Enzyme preparation from the decoupled production comprised an increased portion (61% compared with 26%) of the active sucrose synthase homotetramer. In summary, therefore, we showed that the expression in growth-arrested E. coli is promising for recombinant production of plant Leloir glycosyltransferases.


Subject(s)
Escherichia coli , Glycosyltransferases , Recombinant Proteins , Soybean Proteins , Synthetic Biology/methods , Bioreactors/microbiology , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Glycosylation , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Soybean Proteins/chemistry , Soybean Proteins/genetics , Soybean Proteins/metabolism
12.
J Biotechnol ; 235: 100-11, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27107466

ABSTRACT

The residue-specific labeling of proteins with non-canonical amino acids (ncAA) is well established in shake flask cultures. A key aspect for the transfer of the methodology to larger scales for biotechnological applications is the cost of the supplemented ncAAs. Therefore, we established a scalable bioprocess using an engineered host strain for the biosynthesis of the methionine analog norleucine at titers appropriate for the efficient and economic labeling of proteins. To enhance the biosynthesis of norleucine, which is a side-product of the branched chain amino acid pathway, we deleted all three acetolactate synthase isoforms of the methionine auxotrophic Escherichia coli expression strain B834(DE3). Additionally, we overexpressed leuABCD to boost the biosynthesis of norleucine. We systematically analyzed the production of norleucine under the conditions for its residue-specific incorporation in bioreactor cultures that had a 30-fold higher cell density than shake flask cultures. Under optimized conditions, 5g/L norleucine was biosynthesized. This titer is two times higher than the standard supplementation with norleucine of a culture with comparable cell density. We expect that our metabolically engineered strain for the improved biosynthesis of norleucine in combination with the proposed bioprocess will facilitate the efficient residue-specific labeling of proteins at a reasonable price in scales beyond the shake flask.


Subject(s)
Escherichia coli/metabolism , Metabolic Engineering/methods , Norleucine , Recombinant Proteins , Acetolactate Synthase/metabolism , Escherichia coli/genetics , Norleucine/analysis , Norleucine/chemistry , Norleucine/metabolism , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
14.
ACS Synth Biol ; 4(3): 265-73, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-24847676

ABSTRACT

The phage-derived T7 RNA polymerase is the most prominent orthogonal transcriptions system used in the field of synthetic biology. However, gene expression driven by T7 RNA polymerase is prone to read-through transcription due to contextuality of the T7 terminator. The native T7 terminator has a termination efficiency of approximately 80% and therefore provides insufficient insulation of the expression unit. By using a combination of a synthetic T7 termination signal with two well-known transcriptional terminators (rrnBT1 and T7), we have been able to increase the termination efficiency to 99%. To characterize putative effects of an enhanced termination signal on product yield and process stability, industrial-relevant fed batch cultivations have been performed. Fermentation of a E. coli HMS174(DE3) strain carrying a pET30a derivative containing the improved termination signal showed a significant decrease of plasmid copy number (PCN) and an increase in total protein yield under standard conditions.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Plasmids/genetics , Terminator Regions, Genetic/genetics , Transcription, Genetic/genetics , Viral Proteins/genetics , Biotechnology , Escherichia coli , Genetic Engineering , Models, Genetic , RNA, Messenger/analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Synthetic Biology
15.
Genome Announc ; 2(6)2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25414488

ABSTRACT

Escherichia coli strain K-12 substrain RV308 is an engineered descendant of the K-12 wild-type strain. Like its ancestor, it is an important organism in biotechnological research and is heavily used for the expression of single-chain variable fragments. Here, we report the complete genome sequence of E. coli K-12 RV308 (ATCC 31608).

16.
Genome Announc ; 2(6)2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25414489

ABSTRACT

Escherichia coli strain K-12 substrain HMS174 is an engineered descendant of the E. coli K-12 wild-type strain. Like its ancestor, it is an important organism in biotechnological research and is used in fermentation processes for heterologous protein production. Here, we report the complete genome sequence of E. coli HMS174 (ATCC 47011).

17.
Methods Mol Biol ; 1139: 505-41, 2014.
Article in English | MEDLINE | ID: mdl-24619702

ABSTRACT

Recent developments in DNA vaccine research provide a new momentum for this rather young and potentially disruptive technology. Gene-based vaccines are capable of eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria, and tuberculosis, for which the conventional vaccine technologies have failed so far. The recent identification and characterization of genes coding for tumor antigens has stimulated the development of DNA-based antigen-specific cancer vaccines. Although most academic researchers consider the production of reasonable amounts of plasmid DNA (pDNA) for immunological studies relatively easy to solve, problems often arise during this first phase of production. In this chapter we review the current state of the art of pDNA production at small (shake flasks) and mid-scales (lab-scale bioreactor fermentations) and address new trends in vector design and strain engineering. We will guide the reader through the different stages of process design starting from choosing the most appropriate plasmid backbone, choosing the right Escherichia coli (E. coli) strain for production, and cultivation media and scale-up issues. In addition, we will address some points concerning the safety and potency of the produced plasmids, with special focus on producing antibiotic resistance-free plasmids. The main goal of this chapter is to make immunologists aware of the fact that production of the pDNA vaccine has to be performed with as much as attention and care as the rest of their research.


Subject(s)
Genetic Engineering/methods , Genetic Vectors/genetics , Plasmids/genetics , Vaccines, DNA/biosynthesis , Vaccines, DNA/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Fermentation , Gene Silencing , Metabolic Engineering , Safety , Social Control, Formal , Temperature , Transgenes/genetics
18.
PLoS One ; 8(8): e70516, 2013.
Article in English | MEDLINE | ID: mdl-23950949

ABSTRACT

Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for production of recombinant proteins on an industrial scale. To improve existing processes and to accelerate bioprocess development, we performed a detailed host analysis. We investigated the different behaviors of the E. coli production strains BL21, RV308, and HMS174 in response to high-glucose concentrations. Tightly controlled cultivations were conducted under defined environmental conditions for the in-depth analysis of physiological behavior. In addition to acquisition of standard process parameters, we also used DNA microarray analysis and differential gel electrophoresis (Ettan(TM) DIGE). Batch cultivations showed different yields of the distinct strains for cell dry mass and growth rate, which were highest for BL21. In addition, production of acetate, triggered by excess glucose supply, was much higher for the K-12 strains compared to the B strain. Analysis of transcriptome data showed significant alteration in 347 of 3882 genes common among all three hosts. These differentially expressed genes included, for example, those involved in transport, iron acquisition, and motility. The investigation of proteome patterns additionally revealed a high number of differentially expressed proteins among the investigated hosts. The subsequently selected 38 spots included proteins involved in transport and motility. The results of this comprehensive analysis delivered a full genomic picture of the three investigated strains. Differentially expressed groups for targeted host modification were identified like glucose transport or iron acquisition, enabling potential optimization of strains to improve yield and process quality. Dissimilar growth profiles of the strains confirm different genotypes. Furthermore, distinct transcriptome patterns support differential regulation at the genome level. The identified proteins showed high agreement with the transcriptome data and suggest similar regulation within a host at both levels for the identified groups. Such host attributes need to be considered in future process design and operation.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/growth & development , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Glucose/metabolism , Escherichia coli/metabolism , Escherichia coli K12/genetics , Escherichia coli K12/growth & development , Escherichia coli K12/metabolism , Escherichia coli Proteins/metabolism , Industrial Microbiology , Proteome/genetics , Proteome/metabolism , Proteomics , Transcriptome
19.
Trends Biotechnol ; 31(9): 539-47, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23830144

ABSTRACT

Nonviral gene therapy and DNA vaccines have become the first promising approaches to treat, cure, or ultimately prevent disease by providing genetic information encoded on a plasmid. Since 1989, more than 1800 clinical trials have been approved worldwide, and approximately 20% of them are using plasmid DNA (pDNA) as a vector system. Although much safer than viral approaches, DNA vectors generally do encode antibiotic resistance genes in the plasmid backbone. These antibiotic resistance markers constitute a possible safety risk, and they are associated with structural plasmid instabilities and decreased gene delivery efficiency. These drawbacks have initiated the development of various antibiotic marker-free selection approaches. We provide an overview on the potential implications of marker-free plasmids and perspectives for their successful biotechnological use in the future.


Subject(s)
Biotechnology/trends , Genetic Therapy/methods , Plasmids/chemistry , Plasmids/genetics , Vaccines, DNA/chemistry , Vaccines, DNA/genetics
20.
Appl Environ Microbiol ; 79(12): 3802-12, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23584782

ABSTRACT

Plasmid-based Escherichia coli BL21(DE3) expression systems are extensively used for the production of recombinant proteins. However, the combination of a high gene dosage with strong promoters exerts extremely stressful conditions on producing cells, resulting in a multitude of protective reactions and malfunctions in the host cell with a strong impact on yield and quality of the product. Here, we provide in-depth characterization of plasmid-based perturbations in recombinant protein production. A plasmid-free T7 system with a single copy of the gene of interest (GOI) integrated into the genome was used as a reference. Transcriptomics in combination with a variety of process analytics were used to characterize and compare a plasmid-free T7-based expression system to a conventional pET-plasmid-based expression system, with both expressing human superoxide dismutase in fed-batch cultivations. The plasmid-free system showed a moderate stress response on the transcriptional level, with only minor effects on cell growth. In contrast to this finding, comprehensive changes on the transcriptome level were observed in the plasmid-based expression system and cell growth was heavily impaired by recombinant gene expression. Additionally, we found that the T7 terminator is not a sufficient termination signal. Overall, this work reveals that the major metabolic burden in plasmid-based systems is caused at the level of transcription as a result of overtranscription of the multicopy product gene and transcriptional read-through of T7 RNA polymerase. We therefore conclude that the presence of high levels of extrinsic mRNAs, competing for the limited number of ribosomes, leads to the significantly reduced translation of intrinsic mRNAs.


Subject(s)
Bioreactors , Biotechnology/methods , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial/physiology , Plasmids/metabolism , Recombinant Proteins/biosynthesis , DNA-Directed DNA Polymerase/metabolism , Gene Expression Profiling/methods , Microarray Analysis , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...