Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 378(2178): 20190496, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32713315

ABSTRACT

Two coupled four-beam acoustic Doppler current profilers were used to provide simultaneous and independent measurements of the turbulent kinetic energy (TKE) dissipation rate ε and the TKE production rate [Formula: see text] over a 36 h long period at a highly energetic tidal energy site in the Alderney Race. The eight-beam arrangement enabled the evaluation of the six components of the Reynolds stress tensor which allows for an improved estimation of the TKE production rate. Depth-time series of ε, [Formula: see text] and the Reynolds stresses are provided. The comparison between ε and [Formula: see text] was performed by calculating individual ratios of ε corresponding to [Formula: see text]. The depth-averaged ratio [Formula: see text] averaged over whole flood and ebb tide were found to be 2.2 and 2.8 respectively, indicating that TKE dissipation exceeds TKE production. It is shown that the term of diffusive transport of TKE is significant. As a result, non-local transport is important to the TKE budget and the common assumption of a local balance, i.e. a balance between production and dissipation, is not valid at the measurement site. This article is part of the theme issue 'New insights on tidal dynamics and tidal energy harvesting in the Alderney Race'.

2.
Philos Trans A Math Phys Eng Sci ; 378(2178): 20190495, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32713316

ABSTRACT

A system of two coupled four-beam acoustic Doppler current profilers was used to collect turbulence measurements over a 36-h period at a highly energetic tidal energy site in Alderney Race. This system enables the evaluation of the six components of the Reynolds stress tensor throughout a large proportion of the water column. The present study provides mean vertical profiles of the velocity, the turbulence intensity and the integral lengthscale along the streamwise, spanwise and vertical direction of the tidal current. Based on our results and considering a tidal-stream energy convertor (TEC) aligned with the current main direction, the main elements of turbulence prone to affect the structure (material fatigue) and to alter power generation would likely be: (i) the streamwise turbulence intensity (Ix), (ii) the shear stress, [Formula: see text], (iii) the normal stress, [Formula: see text] and (iv) the vertical integral lengthscale (Lz). The streamwise turbulence intensity, (Ix), was found to be higher than that estimated at other tidal energy sites across the world for similar height above bottom. Along the vertical direction, the length (Lz) of the large-scale turbulence eddies was found to be equivalent to the rotor diameter of the TEC Sabella D10. It is considered that the turbulence metrics presented in this paper will be valuable for TECs designers, helping them optimize their designs as well as improve loading prediction through the lifetime of the machines. This article is part of the theme issue 'New insights on tidal dynamics and tidal energy harvesting in the Alderney Race'.

SELECTION OF CITATIONS
SEARCH DETAIL
...