Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Exp Med ; 221(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38869500

ABSTRACT

UNC93B1 is a transmembrane domain protein mediating the signaling of endosomal Toll-like receptors (TLRs). We report five families harboring rare missense substitutions (I317M, G325C, L330R, R466S, and R525P) in UNC93B1 causing systemic lupus erythematosus (SLE) or chilblain lupus (CBL) as either autosomal dominant or autosomal recessive traits. As for a D34A mutation causing murine lupus, we recorded a gain of TLR7 and, to a lesser extent, TLR8 activity with the I317M (in vitro) and G325C (in vitro and ex vivo) variants in the context of SLE. Contrastingly, in three families segregating CBL, the L330R, R466S, and R525P variants were isomorphic with respect to TLR7 activity in vitro and, for R525P, ex vivo. Rather, these variants demonstrated a gain of TLR8 activity. We observed enhanced interaction of the G325C, L330R, and R466S variants with TLR8, but not the R525P substitution, indicating different disease mechanisms. Overall, these observations suggest that UNC93B1 mutations cause monogenic SLE or CBL due to differentially enhanced TLR7 and TLR8 signaling.


Subject(s)
Chilblains , Lupus Erythematosus, Systemic , Toll-Like Receptor 7 , Humans , Lupus Erythematosus, Systemic/genetics , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Female , Male , Chilblains/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Gain of Function Mutation , Toll-Like Receptor 8/genetics , Toll-Like Receptor 8/metabolism , Pedigree , Mutation, Missense , HEK293 Cells , Lupus Erythematosus, Cutaneous/genetics , Lupus Erythematosus, Cutaneous/pathology
2.
Curr Opin Immunol ; 84: 102375, 2023 10.
Article in English | MEDLINE | ID: mdl-37562076

ABSTRACT

Intracellular Toll-like receptors (TLRs) are key components of the innate immune system. Their expression in antigen-presenting cells (APCs), and in particular dendritic cells (DCs), makes them critical in the induction of the adaptive immune response. In DCs, they interact with the chaperone UNC93B1 that mediates their trafficking from the endoplasmic reticulum (ER) to endosomes where they are cleaved by proteases and activated. All these different steps are also shared by major histocompatibility complex class-II (MHCII) molecules. Here, we will discuss the tight relationship intracellular TLRs have with the antigen processing machinery in APCs for their trafficking and activation.


Subject(s)
Antigen Presentation , Signal Transduction , Humans , Toll-Like Receptors , Histocompatibility Antigens Class II , Endosomes , Dendritic Cells
3.
Methods Mol Biol ; 2618: 279-288, 2023.
Article in English | MEDLINE | ID: mdl-36905524

ABSTRACT

Phagocytosis is a process by which specific immune cells such as macrophages or dendritic cells engulf large particles. It is an important innate immune defense mechanism for removing a wide variety of pathogens and apoptotic cells. Following phagocytosis, nascent phagosomes are formed which, when fused to lysosome to become phagolysosome containing acidic proteases, will allow the degradation of ingested material. This chapter describes in vitro and in vivo assays to measure phagocytosis by murine dendritic cells using amine beads coupled with streptavidin Alexa 488. This protocol can also be applied to monitor phagocytosis in human dendritic cells.


Subject(s)
Phagocytes , Phagocytosis , Humans , Mice , Animals , Phagocytes/metabolism , Macrophages/metabolism , Phagosomes/metabolism , Dendritic Cells
4.
Mol Immunol ; 144: 44-48, 2022 04.
Article in English | MEDLINE | ID: mdl-35184022

ABSTRACT

Dendritic cells (DCs) have the unique capacity to link innate to adaptive immunity. While most cells that express major histocompatibility (MHC) molecules are able to present antigens to activated T cells, DCs possess the means for presenting antigens to naïve T cells, and, as such, are able to instruct T cells to initiate immune response. There are two cascades of events necessary for DCs to start their instructive function. First, DCs enzymatically process proteins to make T cells recognize an antigen as unique peptide-MHC complexes. Second, DCs provide secretory cytokines and co-stimulatory functions for T cells to respond to this antigen. Thus, the compartments for protein degradation and for protein synthesis are central to DC function. The endoplasmic reticulum (ER), a vast network of membranes and vesicles, connects these compartments and helps modulate DC-specific performance, such as antigen capture and presentation. However, while the health of ER appears relevant for DC function, the intersection between ER stress and antigen presentation remains to be explored.


Subject(s)
Antigen Presentation , Endoplasmic Reticulum Stress , Antigens , Dendritic Cells , Histocompatibility
6.
J Cell Sci ; 133(5)2020 03 10.
Article in English | MEDLINE | ID: mdl-32079661

ABSTRACT

Toll-like receptor 7 (TLR7) is an endosomal receptor that recognizes single-stranded RNA from viruses. Its trafficking and activation is regulated by the endoplasmic reticulum (ER) chaperone UNC93B1 and lysosomal proteases. UNC93B1 also modulates major histocompatibility complex class II (MHCII) antigen presentation, and deficiency in MHCII protein diminishes TLR9 signaling. These results indicate a link between proteins that regulate both innate and adaptive responses. Here, we report that TLR7 resides in lysosomes and interacts with the MHCII-chaperone molecule, the invariant chain (Ii) or CD74, in B cells. In the absence of CD74, TLR7 displays both ER and lysosomal localization, leading to an increase in pro-inflammatory cytokine production. Furthermore, stimulation with TLR7 but not TLR9, is inefficient in boosting antigen presentation in Ii-deficient cells. In contrast, in B cells lacking TLR7 or mutated for UNC93B1, which are able to trigger TLR7 activation, antigen presentation is enhanced. This suggests that TLR7 signaling in B cells is controlled by the Ii chain.


Subject(s)
Membrane Transport Proteins , Toll-Like Receptor 7 , Antigens, Differentiation, B-Lymphocyte/genetics , B-Lymphocytes/metabolism , Histocompatibility Antigens Class II , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...