Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 52(D1): D777-D783, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37897342

ABSTRACT

Meta'omic data on microbial diversity and function accrue exponentially in public repositories, but derived information is often siloed according to data type, study or sampled microbial environment. Here we present SPIRE, a Searchable Planetary-scale mIcrobiome REsource that integrates various consistently processed metagenome-derived microbial data modalities across habitats, geography and phylogeny. SPIRE encompasses 99 146 metagenomic samples from 739 studies covering a wide array of microbial environments and augmented with manually-curated contextual data. Across a total metagenomic assembly of 16 Tbp, SPIRE comprises 35 billion predicted protein sequences and 1.16 million newly constructed metagenome-assembled genomes (MAGs) of medium or high quality. Beyond mapping to the high-quality genome reference provided by proGenomes3 (http://progenomes.embl.de), these novel MAGs form 92 134 novel species-level clusters, the majority of which are unclassified at species level using current tools. SPIRE enables taxonomic profiling of these species clusters via an updated, custom mOTUs database (https://motu-tool.org/) and includes several layers of functional annotation, as well as crosslinks to several (micro-)biological databases. The resource is accessible, searchable and browsable via http://spire.embl.de.


Subject(s)
Databases, Factual , Metagenome , Microbiota , Metagenomics , Microbiota/genetics
2.
Nucleic Acids Res ; 51(D1): D760-D766, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36408900

ABSTRACT

The interpretation of genomic, transcriptomic and other microbial 'omics data is highly dependent on the availability of well-annotated genomes. As the number of publicly available microbial genomes continues to increase exponentially, the need for quality control and consistent annotation is becoming critical. We present proGenomes3, a database of 907 388 high-quality genomes containing 4 billion genes that passed stringent criteria and have been consistently annotated using multiple functional and taxonomic databases including mobile genetic elements and biosynthetic gene clusters. proGenomes3 encompasses 41 171 species-level clusters, defined based on universal single copy marker genes, for which pan-genomes and contextual habitat annotations are provided. The database is available at http://progenomes.embl.de/.


Subject(s)
Genome , Prokaryotic Cells , Databases, Genetic , Genomics , Molecular Sequence Annotation , Bacteria/classification , Bacteria/genetics
3.
Nat Med ; 28(9): 1902-1912, 2022 09.
Article in English | MEDLINE | ID: mdl-36109636

ABSTRACT

Fecal microbiota transplantation (FMT) is a therapeutic intervention for inflammatory diseases of the gastrointestinal tract, but its clinical mode of action and subsequent microbiome dynamics remain poorly understood. Here we analyzed metagenomes from 316 FMTs, sampled pre and post intervention, for the treatment of ten different disease indications. We quantified strain-level dynamics of 1,089 microbial species, complemented by 47,548 newly constructed metagenome-assembled genomes. Donor strain colonization and recipient strain resilience were mostly independent of clinical outcomes, but accurately predictable using LASSO-regularized regression models that accounted for host, microbiome and procedural variables. Recipient factors and donor-recipient complementarity, encompassing entire microbial communities to individual strains, were the main determinants of strain population dynamics, providing insights into the underlying processes that shape the post-FMT gut microbiome. Applying an ecology-based framework to our findings indicated parameters that may inform the development of more effective, targeted microbiome therapies in the future, and suggested how patient stratification can be used to enhance donor microbiota colonization or the displacement of recipient microbes in clinical practice.


Subject(s)
Clostridium Infections , Gastrointestinal Microbiome , Microbiota , Clostridium Infections/therapy , Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract , Humans
4.
Gut ; 71(7): 1359-1372, 2022 07.
Article in English | MEDLINE | ID: mdl-35260444

ABSTRACT

BACKGROUND: Recent evidence suggests a role for the microbiome in pancreatic ductal adenocarcinoma (PDAC) aetiology and progression. OBJECTIVE: To explore the faecal and salivary microbiota as potential diagnostic biomarkers. METHODS: We applied shotgun metagenomic and 16S rRNA amplicon sequencing to samples from a Spanish case-control study (n=136), including 57 cases, 50 controls, and 29 patients with chronic pancreatitis in the discovery phase, and from a German case-control study (n=76), in the validation phase. RESULTS: Faecal metagenomic classifiers performed much better than saliva-based classifiers and identified patients with PDAC with an accuracy of up to 0.84 area under the receiver operating characteristic curve (AUROC) based on a set of 27 microbial species, with consistent accuracy across early and late disease stages. Performance further improved to up to 0.94 AUROC when we combined our microbiome-based predictions with serum levels of carbohydrate antigen (CA) 19-9, the only current non-invasive, Food and Drug Administration approved, low specificity PDAC diagnostic biomarker. Furthermore, a microbiota-based classification model confined to PDAC-enriched species was highly disease-specific when validated against 25 publicly available metagenomic study populations for various health conditions (n=5792). Both microbiome-based models had a high prediction accuracy on a German validation population (n=76). Several faecal PDAC marker species were detectable in pancreatic tumour and non-tumour tissue using 16S rRNA sequencing and fluorescence in situ hybridisation. CONCLUSION: Taken together, our results indicate that non-invasive, robust and specific faecal microbiota-based screening for the early detection of PDAC is feasible.


Subject(s)
Carcinoma, Pancreatic Ductal , Microbiota , Pancreatic Neoplasms , Biomarkers, Tumor , CA-19-9 Antigen , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Case-Control Studies , Humans , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , RNA, Ribosomal, 16S/genetics , Pancreatic Neoplasms
5.
Nucleic Acids Res ; 50(6): 3155-3168, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35323968

ABSTRACT

Prokaryotic Mobile Genetic Elements (MGEs) such as transposons, integrons, phages and plasmids, play important roles in prokaryotic evolution and in the dispersal of cargo functions like antibiotic resistance. However, each of these MGE types is usually annotated and analysed individually, hampering a global understanding of phylogenetic and environmental patterns of MGE dispersal. We thus developed a computational framework that captures diverse MGE types, their cargos and MGE-mediated horizontal transfer events, using recombinases as ubiquitous MGE marker genes and pangenome information for MGE boundary estimation. Applied to ∼84k genomes with habitat annotation, we mapped 2.8 million MGE-specific recombinases to six operational MGE types, which together contain on average 13% of all the genes in a genome. Transposable elements (TEs) dominated across all taxa (∼1.7 million occurrences), outnumbering phages and phage-like elements (<0.4 million). We recorded numerous MGE-mediated horizontal transfer events across diverse phyla and habitats involving all MGE types, disentangled and quantified the extent of hitchhiking of TEs (17%) and integrons (63%) with other MGE categories, and established TEs as dominant carriers of antibiotic resistance genes. We integrated all these findings into a resource (proMGE.embl.de), which should facilitate future studies on the large mobile part of genomes and its horizontal dispersal.


Subject(s)
Bacteria , Bacteriophages , Bacteria/genetics , Bacteriophages/genetics , DNA Transposable Elements/genetics , Drug Resistance, Microbial/genetics , Gene Transfer, Horizontal , Phylogeny , Recombinases/genetics
6.
Nature ; 601(7892): 252-256, 2022 01.
Article in English | MEDLINE | ID: mdl-34912116

ABSTRACT

Microbial genes encode the majority of the functional repertoire of life on earth. However, despite increasing efforts in metagenomic sequencing of various habitats1-3, little is known about the distribution of genes across the global biosphere, with implications for human and planetary health. Here we constructed a non-redundant gene catalogue of 303 million species-level genes (clustered at 95% nucleotide identity) from 13,174 publicly available metagenomes across 14 major habitats and use it to show that most genes are specific to a single habitat. The small fraction of genes found in multiple habitats is enriched in antibiotic-resistance genes and markers for mobile genetic elements. By further clustering these species-level genes into 32 million protein families, we observed that a small fraction of these families contain the majority of the genes (0.6% of families account for 50% of the genes). The majority of species-level genes and protein families are rare. Furthermore, species-level genes, and in particular the rare ones, show low rates of positive (adaptive) selection, supporting a model in which most genetic variability observed within each protein family is neutral or nearly neutral.


Subject(s)
Metagenome , Metagenomics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Ecosystem , Humans , Metagenome/genetics
7.
Nat Ecol Evol ; 5(2): 195-203, 2021 02.
Article in English | MEDLINE | ID: mdl-33398106

ABSTRACT

Resource competition and metabolic cross-feeding are among the main drivers of microbial community assembly. Yet the degree to which these two conflicting forces are reflected in the composition of natural communities has not been systematically investigated. Here, we use genome-scale metabolic modelling to assess the potential for resource competition and metabolic cooperation in large co-occurring groups (up to 40 members) across thousands of habitats. Our analysis reveals two distinct community types, which are clustered at opposite ends of a spectrum in a trade-off between competition and cooperation. At one end are highly cooperative communities, characterized by smaller genomes and multiple auxotrophies. At the other end are highly competitive communities, which feature larger genomes and overlapping nutritional requirements, and harbour more genes related to antimicrobial activity. The latter are mainly present in soils, whereas the former are found in both free-living and host-associated habitats. Community-scale flux simulations show that, whereas competitive communities can better resist species invasion but not nutrient shift, cooperative communities are susceptible to species invasion but resilient to nutrient change. We also show, by analysing an additional data set, that colonization by probiotic species is positively associated with the presence of cooperative species in the recipient microbiome. Together, our results highlight the bifurcation between competitive and cooperative metabolism in the assembly of natural communities and its implications for community modulation.


Subject(s)
Microbiota , Nutrients
8.
Nat Rev Microbiol ; 18(9): 491-506, 2020 09.
Article in English | MEDLINE | ID: mdl-32499497

ABSTRACT

Studying within-species variation has traditionally been limited to culturable bacterial isolates and low-resolution microbial community fingerprinting. Metagenomic sequencing and technical advances have enabled culture-free, high-resolution strain and subspecies analyses at high throughput and in complex environments. This holds great scientific promise but has also led to an overwhelming number of methods and terms to describe infraspecific variation. This Review aims to clarify these advances by focusing on the diversity within bacterial and archaeal species in the context of microbiomics. We cover foundational microevolutionary concepts relevant to population genetics and summarize how within-species variation can be studied and stratified directly within microbial communities with a focus on metagenomics. Finally, we describe how common applications of within-species variation can be achieved using metagenomic data. We aim to guide the selection of appropriate terms and analytical approaches to facilitate researchers in benefiting from the increasing availability of large, high-resolution microbiome genetic sequencing data.


Subject(s)
Metagenomics/methods , Microbiota/genetics , Bacteria/genetics , Evolution, Molecular
9.
ISME J ; 14(5): 1247-1259, 2020 05.
Article in English | MEDLINE | ID: mdl-32047279

ABSTRACT

Microbial organisms inhabit virtually all environments and encompass a vast biological diversity. The pangenome concept aims to facilitate an understanding of diversity within defined phylogenetic groups. Hence, pangenomes are increasingly used to characterize the strain diversity of prokaryotic species. To understand the interdependence of pangenome features (such as the number of core and accessory genes) and to study the impact of environmental and phylogenetic constraints on the evolution of conspecific strains, we computed pangenomes for 155 phylogenetically diverse species (from ten phyla) using 7,000 high-quality genomes to each of which the respective habitats were assigned. Species habitat ubiquity was associated with several pangenome features. In particular, core-genome size was more important for ubiquity than accessory genome size. In general, environmental preferences had a stronger impact on pangenome evolution than phylogenetic inertia. Environmental preferences explained up to 49% of the variance for pangenome features, compared with 18% by phylogenetic inertia. This observation was robust when the dataset was extended to 10,100 species (59 phyla). The importance of environmental preferences was further accentuated by convergent evolution of pangenome features in a given habitat type across different phylogenetic clades. For example, the soil environment promotes expansion of pangenome size, while host-associated habitats lead to its reduction. Taken together, we explored the global principles of pangenome evolution, quantified the influence of habitat, and phylogenetic inertia on the evolution of pangenomes and identified criteria governing species ubiquity and habitat specificity.


Subject(s)
Biodiversity , Prokaryotic Cells , Ecosystem , Genome Size , Phylogeny
10.
Nucleic Acids Res ; 48(D1): D621-D625, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31647096

ABSTRACT

Microbiology depends on the availability of annotated microbial genomes for many applications. Comparative genomics approaches have been a major advance, but consistent and accurate annotations of genomes can be hard to obtain. In addition, newer concepts such as the pan-genome concept are still being implemented to help answer biological questions. Hence, we present proGenomes2, which provides 87 920 high-quality genomes in a user-friendly and interactive manner. Genome sequences and annotations can be retrieved individually or by taxonomic clade. Every genome in the database has been assigned to a species cluster and most genomes could be accurately assigned to one or multiple habitats. In addition, general functional annotations and specific annotations of antibiotic resistance genes and single nucleotide variants are provided. In short, proGenomes2 provides threefold more genomes, enhanced habitat annotations, updated taxonomic and functional annotation and improved linkage to the NCBI BioSample database. The database is available at http://progenomes.embl.de/.


Subject(s)
Databases, Genetic , Genome, Archaeal , Genome, Bacterial , Genomics , Computational Biology/methods , Ecosystem , Internet , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Prokaryotic Cells , Reproducibility of Results , Software
11.
Elife ; 82019 02 12.
Article in English | MEDLINE | ID: mdl-30747106

ABSTRACT

The gastrointestinal tract is abundantly colonized by microbes, yet the translocation of oral species to the intestine is considered a rare aberrant event, and a hallmark of disease. By studying salivary and fecal microbial strain populations of 310 species in 470 individuals from five countries, we found that transmission to, and subsequent colonization of, the large intestine by oral microbes is common and extensive among healthy individuals. We found evidence for a vast majority of oral species to be transferable, with increased levels of transmission in colorectal cancer and rheumatoid arthritis patients and, more generally, for species described as opportunistic pathogens. This establishes the oral cavity as an endogenous reservoir for gut microbial strains, and oral-fecal transmission as an important process that shapes the gastrointestinal microbiome in health and disease.


Subject(s)
Bacteria/classification , Bacteria/genetics , Intestine, Large/microbiology , Microbiota , Mouth/microbiology , Cluster Analysis , Feces/microbiology , Humans , Metagenomics , Saliva/microbiology
13.
Biogerontology ; 17(5-6): 785-803, 2016 11.
Article in English | MEDLINE | ID: mdl-27230747

ABSTRACT

Microbial communities are known to significantly affect various fitness components and survival of their insect hosts, including Drosophila. The composition of symbiotic microbiota has been shown to change with the host's aging. It is unclear whether these changes are caused by the aging process or, vice versa, they affect the host's aging and longevity. Recent findings indicate that fitness and lifespan of Drosophila are affected by endosymbiotic bacteria Wolbachia. These effects, however, are inconsistent and have been reported both to extend and shorten longevity. The main molecular pathways underlying the lifespan-modulating effects of Wolbachia remain unclear, however insulin/insulin-like growth factor, immune deficiency, ecdysteroid synthesis and signaling and c-Jun N-terminal kinase pathways as well as heat shock protein synthesis and autophagy have been proposed to play a role. Here we revise the current evidence that elucidates the impact of Wolbachia endosymbionts on the aging processes in Drosophila.


Subject(s)
Aging/physiology , Drosophila/microbiology , Drosophila/physiology , Longevity/physiology , Symbiosis/physiology , Wolbachia/physiology , Animals , Bacterial Proteins/metabolism , Drosophila Proteins/metabolism , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...