Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38502265

ABSTRACT

The characteristics of the vegetation fire (VF) regime are strongly influenced by geographical variables such as regional physiographic settings, location, and climate. Understanding the VF regime is extremely important for managing and mitigating the impacts of fires on ecosystems, communities, and human activities in forest fire-prone regions. The present study thereby aimed to explore the potential effects of the confounding factors on VF in India to offer actionable and achievable solutions for mitigating this concurring environmental issue sustainably. A global burn area (250 m) data (Fire-CCIv5.1) and fire radiative power (FRP) were used to investigate the dynamics of VF across seven different divisions in India. The study also used the maximum and minimum temperatures, precipitation, population density, and intensity of human modification to model forest burn areas (including grassland). The Coupled Model Intercomparison Project-6 (CMIP6) was used to predict the burn area for 2030 and 2050 future climate scenarios. The present study accounted for a sizable increasing trend of VF during 2001-2019 period. The highest increasing trend was found in central India (513 and 343 km2 year-1 in the forest and crop fire, respectively), followed by southern India (364 km2 year-1 in forest fire), and upper Indo-Gangetic plain (128 km2 year-1 in crop fire). The FRP has varied significantly across the divisions, with the north-eastern Himalayas exhibiting the highest FRP hotspot. The maximum and minimum temperatures have the greatest influence on forest fires, according to Random Forest (RF) modeling. The estimated pre-monsoonal burn area for 2050 and 2050 future scenarios suggested a more frequent forest fire occurrence across India, particularly in southern and central India. A comprehensive forest fire control policy is therefore essential to safeguard and conserve forest cover in the regions, affected by forest fire periodically.

2.
Environ Res ; 210: 112818, 2022 07.
Article in English | MEDLINE | ID: mdl-35104482

ABSTRACT

Forest fires impact on soil, water, and biota resources. The current forest fires in the West Coast of the United States (US) profoundly impacted the atmosphere and air quality across the ecosystems and have caused severe environmental and public health burdens. Forest fire led emissions could significantly exacerbate the air pollution level and, therefore, would play a critical role if the same occurs together with any epidemic and pandemic health crisis. Limited research is done so far to examine its impact in connection to the current pandemic. As of October 21, nearly 8.2 million acres of forest area were burned, with more than 25 casualties reported so far. In-situ air pollution data were utilized to examine the effects of the 2020 forest fire on atmosphere and coronavirus (COVID-19) casualties. The spatial-temporal concentrations of particulate matter (PM2.5 and PM10) and Nitrogen Dioxide (NO2) were collected from August 1 to October 30 for 2020 (the fire year) and 2019 (the reference year). Both spatial (Multiscale Geographically Weighted Regression) and non-spatial (Negative Binomial Regression) analyses were performed to assess the adverse effects of fire emission on human health. The in-situ data-led measurements showed that the maximum increases in PM2.5, PM10, and NO2 concentrations (µg/m3) were clustered in the West Coastal fire-prone states during August 1 - October 30, 2020. The average concentration (µg/m3) of particulate matter (PM2.5 and PM10) and NO2 was increased in all the fire states severely affected by forest fires. The average PM2.5 concentrations (µg/m3) over the period were recorded as 7.9, 6.3, 5.5, and 5.2 for California, Colorado, Oregon, and Washington in 2019, increasing up to 24.9, 13.4, 25.0, and 17.0 in 2020. Both spatial and non-spatial regression models exhibited a statistically significant association between fire emission and COVID-19 incidents. Such association has been demonstrated robust and stable by a total of 30 models developed for analyzing the spatial non-stationary and local association. More in-depth research is needed to better understand the complex relationship between forest fire emission and human health.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Wildfires , Air Pollutants/analysis , Air Pollution/analysis , COVID-19/epidemiology , Ecosystem , Environmental Monitoring , Humans , Nitrogen Dioxide/analysis , Particulate Matter/analysis , United States/epidemiology
3.
Sustain Cities Soc ; 68: 102784, 2021 May.
Article in English | MEDLINE | ID: mdl-33643810

ABSTRACT

Since December 2019, the world has witnessed the stringent effect of an unprecedented global pandemic, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of January 29,2021, there have been 100,819,363 confirmed cases and 2,176,159 deaths reported. Among the countries affected severely by COVID-19, the United States tops the list. Research has been conducted to discuss the causal associations between explanatory factors and COVID-19 transmission in the contiguous United States. However, most of these studies focus more on spatial associations of the estimated parameters, yet exploring the time-varying dimension in spatial econometric modeling appears to be utmost essential. This research adopts various relevant approaches to explore the potential effects of driving factors on COVID-19 counts in the contiguous United States. A total of three global spatial regression models and two local spatial regression models, the latter including geographically weighted regression (GWR) and multiscale GWR (MGWR), are performed at the county scale to take into account the scale effects. For COVID-19 cases, ethnicity, crime, and income factors are found to be the strongest covariates and explain most of the variance of the modeling estimation. For COVID-19 deaths, migration (domestic and international) and income factors play a critical role in explaining spatial differences of COVID-19 deaths across counties. Such associations also exhibit temporal variations from March to July, as supported by better performance of MGWR than GWR. Both global and local associations among the parameters vary highly over space and change across time. Therefore, time dimension should be paid more attention to in the spatial epidemiological analysis. Among the two local spatial regression models, MGWR performs more accurately, as it has slightly higher Adj. R2 values (for cases, R2 = 0.961; for deaths, R2 = 0.962), compared to GWR's Adj. R2 values (for cases, R2 = 0.954; for deaths, R2 = 0.954). To inform policy-makers at the nation and state levels, understanding the place-based characteristics of the explanatory forces and related spatial patterns of the driving factors is of paramount importance. Since it is not the first time humans are facing public health emergency, the findings of the present research on COVID-19 therefore can be used as a reference for policy designing and effective decision making.

4.
Sci Total Environ ; 765: 142723, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33077215

ABSTRACT

Coronavirus disease, a novel severe acute respiratory syndrome (SARS COVID-19), has become a global health concern due to its unpredictable nature and lack of adequate medicines. Machine Learning (ML) models could be effective in identifying the most critical factors which are responsible for the overall fatalities caused by COVID-19. The functional capabilities of ML models in epidemiological research, especially for COVID-19, are not substantially explored. To bridge this gap, this study has adopted two advanced ML models, viz. Random Forest (RF) and Gradient Boosted Machine (GBM), to perform the regression modelling and provide subsequent interpretation. Five successive steps were followed to carry out the analysis: (1) identification of relevant key explanatory variables; (2) application of data dimensionality reduction for eliminating redundant information; (3) utilizing ML models for measuring relative influence (RI) of the explanatory variables; (4) evaluating interconnections between and among the key explanatory variables and COVID-19 case and death counts; (5) time series analysis for examining the rate of incidences of COVID-19 cases and deaths. Among the explanatory variables considered in this study, air pollution, migration, economy, and demographic factor were found to be the most significant controlling factors. Since a very limited research is available to discuss the superiority of ML models for identifying the key determinants of COVID-19, this study could be a reference for future public health research. Additionally, all the models and data used in this study are open source and freely available, thereby, reproducibility and scientific replication will be achievable easily.


Subject(s)
COVID-19 , Pandemics , Humans , Machine Learning , Reproducibility of Results , SARS-CoV-2
5.
Environ Res ; 193: 110514, 2021 02.
Article in English | MEDLINE | ID: mdl-33245884

ABSTRACT

The countries around the world are dealing with air quality issues for decades due to their mode of production and energy usages. The outbreak of COVID-19 as a pandemic and consequent global economic shutdown, for the first time, provided a base for the real-time experiment of the effect of reduced emissions across the globe in abetting the air pollution issue. The present study dealt with the changes in Aerosol Optical Depth (AOD), a marker of air pollution, because of global economic shutdown due to the coronavirus pandemic. The study considered the countries in south and south-east Asia (SSEA), Europe and the USA for their extended period of lockdown due to coronavirus pandemic. Daily Aerosol Optical Depth (AOD) from Moderate-resolution imaging spectroradiometer (MODIS) and tropospheric column density of NO2 and SO2 from Ozone monitoring instrument (OMI) sensors, including meteorological data such as wind speed (WS) and relative humidity (RH) were analyzed during the pre-lockdown (2017-2019) and lockdown periods (2020). The average AOD, NO2 and SO2 during the lockdown period were statistically compared with their pre-lockdown average using Wilcoxon-signed-paired-rank test. The accuracy of the MODIS-derived AOD, including the changing pattern of AOD due to lockdown was estimated using AERONET data. The weekly anomaly of AOD, NO2 and SO2 was used for analyzing the space-time variation of aerosol load as restrictions were imposed by the concerned countries at the different points of time. Additionally, a random forest-based regression (RF) model was used to examine the effects of meteorological and emission parameters on the spatial variation of AOD. A significant reduction of AOD (-20%) was obtained for majority of the areas in SSEA, Europe and USA during the lockdown period. Yet, the clusters of increased AOD (30-60%) was obtained in the south-east part of SSEA, the western part of Europe and US regions. NO2 reductions were measured up to 20-40%, while SO2 emission increased up to 30% for a majority of areas in these regions. A notable space-time variation was observed in weekly anomaly. We found the evidence of the formation of new particles for causing high AOD under high RH and low WS, aided by the downward vertical wind flow. The RF model showed a distinguishable relative importance of emission and meteorological factors among these regions to account for the spatial variability of AOD. Our findings suggest that the continued lockdown might provide a temporary solution to air pollution; however, to combat persistent air quality issues, it needs switching over to the cleaner mode of production and energy. The findings of this study, thus, advocated for alternative energy policy at the global scale.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Asia, Southeastern , Communicable Disease Control , Environmental Monitoring , Europe , Humans , Pandemics , SARS-CoV-2 , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL
...