Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4155, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438348

ABSTRACT

The small Ultra-Red Fluorescent Protein (smURFP) represents a new class of fluorescent protein with exceptional photostability and brightness derived from allophycocyanin in a previous directed evolution. Here, we report the smURFP crystal structure to better understand properties and enable further engineering of improved variants. We compare this structure to the structures of allophycocyanin and smURFP mutants to identify the structural origins of the molecular brightness. We then use a structure-guided approach to develop monomeric smURFP variants that fluoresce with phycocyanobilin but not biliverdin. Furthermore, we measure smURFP photophysical properties necessary for advanced imaging modalities, such as those relevant for two-photon, fluorescence lifetime, and single-molecule imaging. We observe that smURFP has the largest two-photon cross-section measured for a fluorescent protein, and that it produces more photons than organic dyes. Altogether, this study expands our understanding of the smURFP, which will inform future engineering toward optimal FPs compatible with whole organism studies.


Subject(s)
Biliverdine , Coloring Agents , Luminescent Proteins/genetics , Engineering , Red Fluorescent Protein
2.
Nat Commun ; 13(1): 7117, 2022 11 19.
Article in English | MEDLINE | ID: mdl-36402773

ABSTRACT

APOBEC3 proteins (A3s) are enzymes that catalyze the deamination of cytidine to uridine in single-stranded DNA (ssDNA) substrates, thus playing a key role in innate antiviral immunity. However, the APOBEC3 family has also been linked to many mutational signatures in cancer cells, which has led to an intense interest to develop inhibitors of A3's catalytic activity as therapeutics as well as tools to study A3's biochemistry, structure, and cellular function. Recent studies have shown that ssDNA containing 2'-deoxy-zebularine (dZ-ssDNA) is an inhibitor of A3s such as A3A, A3B, and A3G, although the atomic determinants of this activity have remained unknown. To fill this knowledge gap, we determined a 1.5 Å resolution structure of a dZ-ssDNA inhibitor bound to active A3G. The crystal structure revealed that the activated dZ-H2O mimics the transition state by coordinating the active site Zn2+ and engaging in additional stabilizing interactions, such as the one with the catalytic residue E259. Therefore, this structure allowed us to capture a snapshot of the A3's transition state and suggests that developing transition-state mimicking inhibitors may provide a new opportunity to design more targeted molecules for A3s in the future.


Subject(s)
Cytidine Deaminase , Oligonucleotides , APOBEC-3G Deaminase/chemistry , Cytidine Deaminase/genetics , DNA, Single-Stranded , Catalytic Domain
3.
Curr Opin Struct Biol ; 67: 195-204, 2021 04.
Article in English | MEDLINE | ID: mdl-33486429

ABSTRACT

APOBEC3 enzymes are key enzymes in our innate immune system regulating antiviral response in HIV and unfortunately adding diversity in cancer as they deaminate cytosine. Seven unique single and double domain APOBEC3s provide them with unique activity and specificity profiles for this deamination. Recent crystal and NMR structures of APOBEC3 complexes are unraveling the variety of epitopes involved in binding nucleic acids, including at the catalytic site, elsewhere on the catalytic domain and in the inactive N-terminal domain. The interplay between these diverse interactions is critical to uncovering the mechanisms by which APOBEC3s recognize and process their substrates.


Subject(s)
APOBEC Deaminases , DNA , RNA , APOBEC Deaminases/metabolism
4.
J Mol Biol ; 432(23): 6042-6060, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33098858

ABSTRACT

APOBEC3G (A3G) is a single-stranded DNA (ssDNA) cytosine deaminase that can restrict HIV-1 infection by mutating the viral genome. A3G consists of a non-catalytic N-terminal domain (NTD) and a catalytic C-terminal domain (CTD) connected by a short linker. While the CTD catalyzes cytosine deamination, the NTD is believed to provide additional affinity for ssDNA. Structures of both A3G domains have been solved individually; however, a full-length A3G structure has been challenging. Recently, crystal structures of full-length rhesus macaque A3G variants were solved which suggested dimerization mechanisms and RNA binding surfaces, whereas the dimerization appeared to compromise catalytic activity. We determined the crystal structure of a soluble variant of human A3G (sA3G) at 2.5 Å and from these data generated a model structure of wild-type A3G. This model demonstrated that the NTD was rotated 90° relative to the CTD along the major axis of the molecule, an orientation that forms a positively charged channel connected to the CTD catalytic site, consisting of NTD loop-1 and CTD loop-3. Structure-based mutations, in vitro deamination and DNA binding assays, and HIV-1 restriction assays identify R24, located in the NTD loop-1, as essential to a critical interaction with ssDNA. Furthermore, sA3G was shown to bind a deoxy-cytidine dinucleotide near the catalytic Zn2+, yet not in the catalytic position, where the interactions between deoxy-cytidines and CTD loop-1 and loop-7 residues were different from those formed with substrate. These new interactions suggest a mechanism explaining why A3G exhibits a 3' to 5' directional preference in processive deamination.


Subject(s)
APOBEC-3G Deaminase/ultrastructure , DNA, Single-Stranded/chemistry , DNA-Binding Proteins/ultrastructure , Protein Conformation , APOBEC-3G Deaminase/chemistry , APOBEC-3G Deaminase/genetics , Animals , Catalytic Domain/genetics , Crystallography, X-Ray , DNA, Single-Stranded/genetics , DNA-Binding Proteins/genetics , Humans , Macaca mulatta/genetics , Mutation/genetics , Protein Binding/genetics , Protein Domains/genetics , Zinc/chemistry
5.
Nat Commun ; 9(1): 2460, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29941968

ABSTRACT

The human APOBEC3G protein is a cytidine deaminase that generates cytidine to deoxy-uridine mutations in single-stranded DNA (ssDNA), and capable of restricting replication of HIV-1 by generating mutations in viral genome. The mechanism by which APOBEC3G specifically deaminates 5'-CC motifs has remained elusive since structural studies have been hampered due to apparently weak ssDNA binding of the catalytic domain of APOBEC3G. We overcame the problem by generating a highly active variant with higher ssDNA affinity. Here, we present the crystal structure of this variant complexed with a ssDNA substrate at 1.86 Å resolution. This structure reveals atomic-level interactions by which APOBEC3G recognizes a functionally-relevant 5'-TCCCA sequence. This complex also reveals a key role of W211 in substrate recognition, implicating a similar recognition in activation-induced cytidine deaminase (AID) with a conserved tryptophan.


Subject(s)
APOBEC-3G Deaminase/chemistry , Catalytic Domain/physiology , DNA, Single-Stranded/chemistry , Cell Line , Crystallography, X-Ray , Cytidine/chemistry , HEK293 Cells , HIV-1/genetics , Humans , Models, Molecular , Protein Structure, Secondary , Virus Replication/genetics
6.
Biochemistry ; 56(10): 1473-1481, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28029777

ABSTRACT

The human cytidine deaminase APOBEC3G (A3G) is a potent inhibitor of the HIV-1 virus in the absence of viral infectivity factor (Vif). The molecular mechanism of A3G antiviral activity is primarily attributed to deamination of single-stranded DNA (ssDNA); however, the nondeamination mechanism also contributes to HIV-1 restriction. The interaction of A3G with ssDNA and RNA is required for its antiviral activity. Here we used atomic force microscopy to directly visualize A3G-RNA and A3G-ssDNA complexes and compare them to each other. Our results showed that A3G in A3G-RNA complexes exists primarily in monomeric-dimeric states, similar to its stoichiometry in complexes with ssDNA. New A3G-RNA complexes in which A3G binds to two RNA molecules were identified. These data suggest the existence of two separate RNA binding sites on A3G. Such complexes were not observed with ssDNA substrates. Time-lapse high-speed atomic force microscopy was applied to characterize the dynamics of the complexes. The data revealed that the two RNA binding sites have different affinities for A3G. On the basis of the obtained results, a model for the interaction of A3G with RNA is proposed.


Subject(s)
APOBEC-3G Deaminase/chemistry , DNA, Single-Stranded/chemistry , DNA, Viral/chemistry , RNA, Viral/chemistry , APOBEC-3G Deaminase/genetics , APOBEC-3G Deaminase/metabolism , Binding Sites , Cloning, Molecular , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Host-Pathogen Interactions , Humans , Microscopy, Atomic Force , Protein Binding , Protein Domains , RNA, Viral/genetics , RNA, Viral/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
Nucleic Acids Res ; 43(5): 2716-29, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25712093

ABSTRACT

The ability of DNA glycosylases to rapidly and efficiently detect lesions among a vast excess of nondamaged DNA bases is vitally important in base excision repair (BER). Here, we use single molecule imaging by atomic force microscopy (AFM) supported by a 2-aminopurine fluorescence base flipping assay to study damage search by human thymine DNA glycosylase (hTDG), which initiates BER of mutagenic and cytotoxic G:T and G:U mispairs in DNA. Our data reveal an equilibrium between two conformational states of hTDG-DNA complexes, assigned as search complex (SC) and interrogation complex (IC), both at target lesions and undamaged DNA sites. Notably, for both hTDG and a second glycosylase, hOGG1, which recognizes structurally different 8-oxoguanine lesions, the conformation of the DNA in the SC mirrors innate structural properties of their respective target sites. In the IC, the DNA is sharply bent, as seen in crystal structures of hTDG lesion recognition complexes, which likely supports the base flipping required for lesion identification. Our results support a potentially general concept of sculpting of glycosylases to their targets, allowing them to exploit the energetic cost of DNA bending for initial lesion sensing, coupled with continuous (extrahelical) base interrogation during lesion search by DNA glycosylases.


Subject(s)
DNA Damage , DNA Glycosylases/metabolism , DNA Repair , DNA/metabolism , Thymine DNA Glycosylase/metabolism , 2-Aminopurine/metabolism , DNA/chemistry , DNA/genetics , Guanine/analogs & derivatives , Guanine/metabolism , Humans , Microscopy, Atomic Force , Mutation , Nucleic Acid Conformation , Substrate Specificity
8.
Int J Biol Markers ; 30(1): e142-7, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25362934

ABSTRACT

Thyroid malfunction is more common in individuals with Down syndrome (DS) than in the general population. It has been hypothesized that thyroid may influence cancer risk. Individuals with DS are at greater risk of developing leukemia than the general population, while solid tumors especially breast cancer (BC) are rare. BC patients have higher levels of circulating thyroid-stimulating hormone (TSH) and prolactin (PRL), both regulated by the thyrotropin-releasing hormone (TRH), a hypothalamic tripeptide. This study was aimed at investigating the status of TRH functional polymorphisms in subjects with DS and BC. Unrelated families with DS probands (n=180), individuals with BC (n=99) and ethnically matched controls (n=216) were recruited. Genomic DNA isolated from peripheral blood was subjected to PCR amplification followed by DNA sequence analysis. Data obtained were analyzed by population- and family-based statistical analysis. Among 30 studied sites, only 2 (rs7645772 and rs13097335) were polymorphic. Case-control analysis showed a lack of any significant association with DS, while the rs13097335 GG and GT genotype frequency was significantly different in the BC samples. A paternal-biased transmission of the G allele was observed in female DS probands. It may be concluded that rs13097335 may have a protective role toward the development of BC.


Subject(s)
Breast Neoplasms/genetics , Down Syndrome/genetics , Thyrotropin-Releasing Hormone/genetics , Adolescent , Adult , Breast Neoplasms/epidemiology , Child , Child, Preschool , Down Syndrome/epidemiology , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Infant , Polymorphism, Single Nucleotide , Young Adult
9.
Org Biomol Chem ; 12(42): 8367-78, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25181003

ABSTRACT

DNA glycosylases remove damaged or enzymatically modified nucleobases from DNA, thereby initiating the base excision repair (BER) pathway, which is found in all forms of life. These ubiquitous enzymes promote genomic integrity by initiating repair of mutagenic and/or cytotoxic lesions that arise continuously due to alkylation, deamination, or oxidation of the normal bases in DNA. Glycosylases also perform essential roles in epigenetic regulation of gene expression, by targeting enzymatically-modified forms of the canonical DNA bases. Monofunctional DNA glycosylases hydrolyze the N-glycosidic bond to liberate the target base, while bifunctional glycosylases mediate glycosyl transfer using an amine group of the enzyme, generating a Schiff base intermediate that facilitates their second activity, cleavage of the DNA backbone. Here we review recent advances in understanding the chemical mechanism of monofunctional DNA glycosylases, with an emphasis on how the reactions are influenced by the properties of the nucleobase leaving-group, the moiety that varies across the vast range of substrates targeted by these enzymes.


Subject(s)
DNA Glycosylases/metabolism , DNA/metabolism , Animals , DNA/chemistry , Deoxycytidine/analogs & derivatives , Deoxycytidine/metabolism , Deoxyuridine/analogs & derivatives , Deoxyuridine/metabolism , Humans , Hydrolysis , Purines/chemistry , Purines/metabolism
10.
Biopolymers ; 102(4): 344-58, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24839139

ABSTRACT

Protein-protein interactions are part of a large number of signaling networks and potential targets for drug development. However, discovering molecules that can specifically inhibit such interactions is a major challenge. S100B, a calcium-regulated protein, plays a crucial role in the proliferation of melanoma cells through protein-protein interactions. In this article, we report the design and development of a bidentate conformationally constrained peptide against dimeric S100B based on a natural tight-binding peptide, TRTK-12. The helical conformation of the peptide was constrained by the substitution of α-amino isobutyric acid--an amino acid having high helical propensity--in positions which do not interact with S100B. A branched bidentate version of the peptide was bound to S100B tightly with a dissociation constant of 8 nM. When conjugated to a cell-penetrating peptide, it caused growth inhibition and rapid apoptosis in melanoma cells. The molecule exerts antiproliferative action through simultaneous inhibition of key growth pathways, including reactivation of wild-type p53 and inhibition of Akt and STAT3 phosphorylation. The apoptosis induced by the bidentate constrained helix is caused by direct migration of p53 to mitochondria. At moderate intravenous dose, the peptide completely inhibits melanoma growth in a mouse model without any significant observable toxicity. The specificity was shown by lack of ability of a double mutant peptide to cause tumor regression at the same dose level. The methodology described here for direct protein-protein interaction inhibition may be effective for rapid development of inhibitors against relatively weak protein-protein interactions for de novo drug development.


Subject(s)
CapZ Actin Capping Protein/chemistry , CapZ Actin Capping Protein/pharmacology , Melanoma/pathology , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Amino Acid Sequence , Animals , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival , Disease Models, Animal , Humans , Mice , Microscopy, Phase-Contrast , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary , Remission Induction , Signal Transduction/drug effects , Temperature , Tumor Suppressor Protein p53/metabolism
11.
J Biol Chem ; 289(22): 15810-9, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24753249

ABSTRACT

Thymine DNA glycosylase (TDG) initiates the repair of G·T mismatches that arise by deamination of 5-methylcytosine (mC), and it excises 5-formylcytosine and 5-carboxylcytosine, oxidized forms of mC. TDG functions in active DNA demethylation and is essential for embryonic development. TDG forms a tight enzyme-product complex with abasic DNA, which severely impedes enzymatic turnover. Modification of TDG by small ubiquitin-like modifier (SUMO) proteins weakens its binding to abasic DNA. It was proposed that sumoylation of product-bound TDG regulates product release, with SUMO conjugation and deconjugation needed for each catalytic cycle, but this model remains unsubstantiated. We examined the efficiency and specificity of TDG sumoylation using in vitro assays with purified E1 and E2 enzymes, finding that TDG is modified efficiently by SUMO-1 and SUMO-2. Remarkably, we observed similar modification rates for free TDG and TDG bound to abasic or undamaged DNA. To examine the conjugation step directly, we determined modification rates (kobs) using preformed E2∼SUMO-1 thioester. The hyperbolic dependence of kobs on TDG concentration gives kmax = 1.6 min(-1) and K1/2 = 0.55 µM, suggesting that E2∼SUMO-1 has higher affinity for TDG than for the SUMO targets RanGAP1 and p53 (peptide). Whereas sumoylation substantially weakens TDG binding to DNA, TDG∼SUMO-1 still binds relatively tightly to AP-DNA (Kd ∼50 nM). Although E2∼SUMO-1 exhibits no specificity for product-bound TDG, the relatively high conjugation efficiency raises the possibility that E2-mediated sumoylation could stimulate product release in vivo. This and other implications for the biological role and mechanism of TDG sumoylation are discussed.


Subject(s)
DNA Repair/physiology , SUMO-1 Protein/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Thymine DNA Glycosylase/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , DNA Methylation/physiology , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Glycosylation , HeLa Cells , Humans , Protein Processing, Post-Translational/physiology , Protein Structure, Secondary , Protein Structure, Tertiary , SUMO-1 Protein/genetics , Small Ubiquitin-Related Modifier Proteins/genetics , Substrate Specificity , Sumoylation/physiology , Thymine DNA Glycosylase/chemistry , Thymine DNA Glycosylase/genetics , Ubiquitin-Conjugating Enzymes/genetics
12.
J Am Chem Soc ; 135(42): 15813-22, 2013 Oct 23.
Article in English | MEDLINE | ID: mdl-24063363

ABSTRACT

5-Methylcytosine (mC) is an epigenetic mark that impacts transcription, development, and genome stability, and aberrant DNA methylation contributes to aging and cancer. Active DNA demethylation involves stepwise oxidation of mC to 5-hydroxymethylcytosine, 5-formylcytosine (fC), and potentially 5-carboxylcytosine (caC), excision of fC or caC by thymine DNA glycosylase (TDG), and restoration of cytosine via follow-on base excision repair. Here, we investigate the mechanism for TDG excision of fC and caC. We find that 5-carboxyl-2'-deoxycytidine ionizes with pK(a) values of 4.28 (N3) and 2.45 (carboxyl), confirming that caC exists as a monoanion at physiological pH. Calculations do not support the proposal that G·fC and G·caC base pairs adopt a wobble structure that is recognized by TDG. Previous studies show that N-glycosidic bond hydrolysis follows a stepwise (S(N)1) mechanism, and that TDG activity increases with pyrimidine N1 acidity, that is, leaving group quality of the target base. Calculations here show that fC and the neutral tautomers of caC are acidic relative to other TDG substrates, but the caC monoanion exhibits poor acidity and likely resists TDG excision. While fC activity is independent of pH, caC excision is acid-catalyzed, and the pH profile indicates that caC ionizes in the enzyme-substrate complex with an apparent pKa of 5.8, likely at N3. Mutational analysis reveals that Asn191 is essential for excision of caC but dispensable for fC activity, indicating that N191 may stabilize N3-protonated forms of caC to facilitate acid catalysis and suggesting that N191A-TDG could potentially be useful for studying DNA demethylation in cells.


Subject(s)
Cytosine/analogs & derivatives , DNA/metabolism , Thymine DNA Glycosylase/metabolism , Cytosine/chemistry , Cytosine/metabolism , DNA/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Molecular Structure , Quantum Theory , Thymine DNA Glycosylase/chemistry
14.
Proc Natl Acad Sci U S A ; 109(21): 8091-6, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22573813

ABSTRACT

DNA base excision repair is essential for maintaining genomic integrity and for active DNA demethylation, a central element of epigenetic regulation. A key player is thymine DNA glycosylase (TDG), which excises thymine from mutagenic G·T mispairs that arise by deamination of 5-methylcytosine (mC). TDG also removes 5-formylcytosine and 5-carboxylcytosine, oxidized forms of mC produced by Tet enzymes. Recent studies show that the glycosylase activity of TDG is essential for active DNA demethylation and for embryonic development. Our understanding of how repair enzymes excise modified bases without acting on undamaged DNA remains incomplete, particularly for mismatch glycosylases such as TDG. We solved a crystal structure of TDG (catalytic domain) bound to a substrate analog and characterized active-site residues by mutagenesis, kinetics, and molecular dynamics simulations. The studies reveal how TDG binds and positions the nucleophile (water) and uncover a previously unrecognized catalytic residue (Thr197). Remarkably, mutation of two active-site residues (Ala145 and His151) causes a dramatic enhancement in G·T glycosylase activity but confers even greater increases in the aberrant removal of thymine from normal A·T base pairs. The strict conservation of these residues may reflect a mechanism used to strike a tolerable balance between the requirement for efficient repair of G·T lesions and the need to minimize aberrant action on undamaged DNA, which can be mutagenic and cytotoxic. Such a compromise in G·T activity can account in part for the relatively weak G·T activity of TDG, a trait that could potentially contribute to the hypermutability of CpG sites in cancer and genetic disease.


Subject(s)
Catalytic Domain/physiology , DNA Repair/physiology , Thymine DNA Glycosylase/chemistry , Thymine DNA Glycosylase/metabolism , Water/chemistry , 5-Methylcytosine/metabolism , CpG Islands/genetics , Crystallography , Enzyme Activation/physiology , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Mutagenesis/physiology , N-Glycosyl Hydrolases/chemistry , N-Glycosyl Hydrolases/genetics , N-Glycosyl Hydrolases/metabolism , Protein Structure, Tertiary/physiology , Substrate Specificity , Thymine/metabolism , Thymine DNA Glycosylase/genetics , Uracil/metabolism , Uracil-DNA Glycosidase/chemistry , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism
15.
J Mol Biol ; 420(3): 164-75, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22560993

ABSTRACT

The mammalian repair protein MBD4 (methyl-CpG-binding domain IV) excises thymine from mutagenic G·T mispairs generated by deamination of 5-methylcytosine (mC), and downstream base excision repair proteins restore a G·C pair. MBD4 is also implicated in active DNA demethylation by initiating base excision repair of G·T mispairs generated by a deaminase enzyme. The question of how mismatch glycosylases attain specificity for excising thymine from G·T, but not A·T, pairs remains largely unresolved. Here, we report a crystal structure of the glycosylase domain of human MBD4 (residues 427-580) bound to DNA containing an abasic nucleotide paired with guanine, providing a glimpse of the enzyme-product complex. The mismatched guanine remains intrahelical, nestled into a recognition pocket. MBD4 provides selective interactions with the mismatched guanine (N1H, N2H(2)) that are not compatible with adenine, which likely confer mismatch specificity. The structure reveals no interactions that would be expected to provide the MBD4 glycosylase domain with specificity for acting at CpG sites. Accordingly, we find modest 1.5- to 2.7-fold reductions in G·T activity upon altering the CpG context. In contrast, 37- to 580-fold effects were observed previously for thymine DNA glycosylase. These findings suggest that specificity of MBD4 for acting at CpG sites depends largely on its methyl-CpG-binding domain, which binds preferably to G·T mispairs in a methylated CpG site. MBD4 glycosylase cannot excise 5-formylcytosine (fC) or 5-carboxylcytosine (caC), intermediates in a Tet (ten eleven translocation)-initiated DNA demethylation pathway. Our structure suggests that MBD4 does not provide the electrostatic interactions needed to excise these oxidized forms of mC.


Subject(s)
DNA/metabolism , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , 5-Methylcytosine/metabolism , Adenine/chemistry , Adenine/metabolism , Binding Sites , Catalytic Domain , CpG Islands , Crystallography, X-Ray , Cytosine/analogs & derivatives , Cytosine/metabolism , DNA/chemistry , Furans/metabolism , Guanine/chemistry , Guanine/metabolism , Humans , Protein Conformation , Substrate Specificity
16.
ACS Chem Biol ; 7(6): 1084-94, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22480451

ABSTRACT

Development of small synthetic transcription factors is important for future cellular engineering and therapeutics. This article describes the chemical synthesis of α-amino-isobutyric acid (Aib) substituted, conformationally constrained, helical peptide mimics of Cro protein from bacteriophage λ that encompasses the DNA recognition elements. The Aib substituted constrained helical peptide monomer shows a moderately reduced dissociation constant compared to the corresponding unsubstituted wild type peptide. A suitably cross-linked dimeric version of the peptide, mimicking the dimeric protein, recapitulates some of the important features of Cro. It binds to the operator site O(R)3, a high affinity Cro binding site in the λ genome, with good affinity and single base-pair discrimination specificity. A dimeric version of an even shorter peptide mimic spanning only the recognition helix of the helix-turn-helix motif of the Cro protein was created following the same design principles. This dimeric peptide binds to O(R)3 with affinity greater than that of the longer version. Chemical shift perturbation experiments show that the binding mode of this peptide dimer to the cognate operator site sequence is similar to the wild type Cro protein. A Green Fluorescent Protein based reporter assay in vivo reveals that the peptide dimer binds the operator site sequences with considerable selectivity and inhibits gene expression. Peptide mimics designed in this way may provide a future framework for creating effective synthetic transcription factors.


Subject(s)
Bacteriophage lambda/chemistry , Peptides/chemistry , Peptides/pharmacology , Repressor Proteins/chemistry , Transcription, Genetic/drug effects , Viral Regulatory and Accessory Proteins/chemistry , Amino Acid Sequence , Base Pairing , Escherichia coli/drug effects , Escherichia coli/genetics , Models, Molecular , Molecular Sequence Data , Operator Regions, Genetic , Peptides/chemical synthesis , Peptides/metabolism
17.
J Biol Chem ; 286(41): 35334-35338, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-21862836

ABSTRACT

Thymine DNA glycosylase (TDG) excises T from G·T mispairs and is thought to initiate base excision repair (BER) of deaminated 5-methylcytosine (mC). Recent studies show that TDG, including its glycosylase activity, is essential for active DNA demethylation and embryonic development. These and other findings suggest that active demethylation could involve mC deamination by a deaminase, giving a G·T mispair followed by TDG-initiated BER. An alternative proposal is that demethylation could involve iterative oxidation of mC to 5-hydroxymethylcytosine (hmC) and then to 5-formylcytosine (fC) and 5-carboxylcytosine (caC), mediated by a Tet (ten eleven translocation) enzyme, with conversion of caC to C by a putative decarboxylase. Our previous studies suggest that TDG could excise fC and caC from DNA, which could provide another potential demethylation mechanism. We show here that TDG rapidly removes fC, with higher activity than for G·T mispairs, and has substantial caC excision activity, yet it cannot remove hmC. TDG excision of fC and caC, oxidation products of mC, is consistent with its strong specificity for excising bases from a CpG context. Our findings reveal a remarkable new aspect of specificity for TDG, inform its catalytic mechanism, and suggest that TDG could protect against fC-induced mutagenesis. The results also suggest a new potential mechanism for active DNA demethylation, involving TDG excision of Tet-produced fC (or caC) and subsequent BER. Such a mechanism obviates the need for a decarboxylase and is consistent with findings that TDG glycosylase activity is essential for active demethylation and embryonic development, as are mechanisms involving TDG excision of deaminated mC or hmC.


Subject(s)
CpG Islands , Cytidine/analogs & derivatives , Cytosine/analogs & derivatives , Thymine DNA Glycosylase/chemistry , Cytidine/chemistry , Cytidine/metabolism , Cytosine/chemistry , Cytosine/metabolism , DNA Methylation/physiology , Humans , Oxidation-Reduction , Substrate Specificity/physiology , Thymine DNA Glycosylase/metabolism
18.
DNA Repair (Amst) ; 10(5): 545-53, 2011 May 05.
Article in English | MEDLINE | ID: mdl-21474392

ABSTRACT

Repair of G·T mismatches arising from deamination of 5-methylcytosine (m(5)C) involves excision of thymine and restoration of a G·C pair via base excision repair (BER). Thymine DNA glycosylase (TDG) is one of two mammalian enzymes that can specifically remove thymine from G·T mispairs. While TDG can excise other bases, it maintains stringent specificity for a CpG context, suggesting deaminated m(5)C is an important biological substrate. Recent studies reveal TDG is essential for embryogenesis; it helps to maintain an active chromatin complex and initiates BER to counter aberrant de novo CpG methylation, which may involve excision of actively deaminated m(5)C. The relatively weak G·T activity of TDG has been implicated in the hypermutability of CpG sites, which largely involves C→T transitions arising from m(5)C deamination. Thus, it is important to understand how TDG recognizes and process substrates, particularly G·T mispairs. Here, we extend our detailed studies of TDG by examining the dependence of substrate binding and catalysis on pH, ionic strength, and temperature. Catalytic activity is relatively constant for pH 5.5-9, but falls sharply for pH>9 due to severely weakened substrate binding, and, potentially, ionization of the target base. Substrate binding and catalysis diminish sharply with increasing ionic strength, particularly for G·T substrates, due partly to effects on nucleotide flipping. TDG aggregates rapidly and irreversibly at 37°C, but can be stabilized by specific and nonspecific DNA. The temperature dependence of catalysis reveals large and unexpected differences for G·U and G·T substrates, where G·T activity exhibits much steeper temperature dependence. The results suggest that reversible nucleotide flipping is much more rapid for G·T substrates, consistent with our previous findings that steric effects limit the active-site lifetime of thymine, which may account for the relatively weak G·T activity. Our findings provide important insight into catalysis by TDG, particularly for mutagenic G·T mispairs.


Subject(s)
Base Pair Mismatch/genetics , Temperature , Thymine DNA Glycosylase/metabolism , Base Sequence , Catalysis , DNA/genetics , DNA/metabolism , Deoxyguanosine/metabolism , Enzyme Activation/physiology , Enzyme Stability/physiology , Humans , Hydrogen-Ion Concentration , Kinetics , Osmolar Concentration , Substrate Specificity , Thymidine/metabolism , Thymine DNA Glycosylase/chemistry
19.
Nucleic Acids Res ; 39(6): 2319-29, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21097883

ABSTRACT

Deamination of 5-methylcytosine to thymine creates mutagenic G · T mispairs, contributing to cancer and genetic disease. Thymine DNA glycosylase (TDG) removes thymine from these G · T lesions, and follow-on base excision repair yields a G · C pair. A previous crystal structure revealed TDG (catalytic domain) bound to abasic DNA product in a 2:1 complex, one subunit at the abasic site and the other bound to undamaged DNA. Biochemical studies showed TDG can bind abasic DNA with 1:1 or 2:1 stoichiometry, but the dissociation constants were unknown, as was the stoichiometry and affinity for binding substrates and undamaged DNA. We showed that 2:1 binding is dispensable for G · U activity, but its role in G · T repair was unknown. Using equilibrium binding anisotropy experiments, we show that a single TDG subunit binds very tightly to G · U mispairs and abasic (G · AP) sites, and somewhat less tightly G · T mispairs. Kinetics experiments show 1:1 binding provides full G · T activity. TDG binds undamaged CpG sites with remarkable affinity, modestly weaker than G · T mispairs, and exhibits substantial affinity for nonspecific DNA. While 2:1 binding is observed for large excess TDG concentrations, our findings indicate that a single TDG subunit is fully capable of locating and processing G · U or G · T lesions.


Subject(s)
Base Pair Mismatch , DNA/metabolism , Thymine DNA Glycosylase/metabolism , CpG Islands , DNA/chemistry , DNA Damage , DNA Repair , Kinetics , Protein Binding , Thymine DNA Glycosylase/chemistry
20.
J Biol Chem ; 284(52): 36680-36688, 2009 Dec 25.
Article in English | MEDLINE | ID: mdl-19880517

ABSTRACT

Thymine DNA glycosylase (TDG) promotes genomic integrity by excising thymine from mutagenic G.T mismatches arising by deamination of 5-methylcytosine, and follow-on base excision repair enzymes restore a G.C pair. TDG cleaves the N-glycosylic bond of dT and some other nucleotides, including 5-substituted 2'-deoxyuridine analogs, once they have been flipped from the helix into its active site. We examined the role of two strictly conserved residues; Asn(140), implicated in the chemical step, and Arg(275), implicated in nucleotide flipping. The N140A variant binds substrate DNA with the same tight affinity as wild-type TDG, but it has no detectable base excision activity for a G.T substrate, and its excision rate is vastly diminished (by approximately 10(4.4)-fold) for G.U, G.FU, and G.BrU substrates. Thus, Asn(140) does not contribute substantially to substrate binding but is essential for the chemical step, where it stabilizes the transition state by approximately 6 kcal/mol (compared with 11.6 kcal/mol stabilization provided by TDG overall). Our recent crystal structure revealed that Arg(275) penetrates the DNA minor groove, filling the void created by nucleotide flipping. We found that the R275A and R275L substitutions weaken substrate binding and substantially decrease the base excision rate for G.T and G.BrU substrates. Our results indicate that Arg(275) promotes and/or stabilizes nucleotide flipping, a role that is most important for target nucleotides that are relatively large (dT and bromodeoxyuridine) and/or have a stable N-glycosylic bond (dT). Arg(275) does not contribute substantially to the binding of TDG to abasic DNA product, and it cannot account for the slow product release exhibited by TDG.


Subject(s)
DNA/chemistry , Nucleotides/chemistry , Thymine DNA Glycosylase/chemistry , Amino Acid Substitution , Binding Sites/physiology , DNA/genetics , DNA/metabolism , Humans , Mutation, Missense , Nucleotides/genetics , Nucleotides/metabolism , Protein Structure, Secondary/physiology , Thymine DNA Glycosylase/genetics , Thymine DNA Glycosylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...