Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 135: 104595, 2021 08.
Article in English | MEDLINE | ID: mdl-34216890

ABSTRACT

BACKGROUND AND OBJECTIVE: In a healthy body, the elastic wall of the arteries forms wave-like structures resulting from the continuous pumping of the heart. The systolic and diastolic phases generate a contraction and expansion pattern, which is mimicked in this study by considering a wavy-walled arterial structure. A numerical investigation of the spatio-temporal flow of blood and heat transfer through a porous medium under the action of magnetic field strength is conducted. METHOD: The governing equations of the blood flow in the Darcy model are simulated by applying a vorticity-stream function formulation approach. The transformed dimensionless equations are further discretized using the finite difference method by developing the Peaceman-Rachford alternating direction implicit (P-R ADI) scheme. RESULTS: The computational results for the axial velocity, temperature distribution, flow visualization using the streamlines and vorticity contours, isotherms, wall shear stress and the average Nusselt number are presented graphically for different values of the physical parameters. CONCLUSIONS: The study shows that the axial velocity increases with an increase in the Darcy number, and a similar phenomenon is observed because of an amplitude variation in the wavy wall. Both temperature and wall shear stress decreases with an increase in the Darcy number. The average Nusselt number increases with the magnetic field strength, while it has a reducing tendency due to the permeability of the porous medium.


Subject(s)
Hemodynamics , Hot Temperature , Arteries , Porosity , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...